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Current layers of transverse scale length smaller than the ion skin depth destabilize whistlers. A set
of 3D electromagnetic fluid equations describing the nonlinear development of the layer is derived. In
simulations based on these equations, the current layer evolves to a strongly turbulent state consisting

of filamentary, finite-length streams of electrons.

The associated anomalous transport of current is

calculated and implications for understanding magnetic reconnection are discussed.

PACS numbers: 52.35.—g, 52.30.q

The release of magnetic energy into high speed flows of
ions and electrons during magnetic reconnection underlies
such diverse phenomena as magnetic substorms, solar
flares, and tokamak disruptions. In spite of much study
the rate of magnetic reconnection and the dispersal of the
released energy into the various plasma constituents is not
well understood. The measured time scales for the release
of magnetic energy are typically much shorter than the
theoretical predictions.

In high temperature plasma the ideal frozen flux
constraint forces reconnection to occur in a quasi-one-
dimensional current sheet, the dissipation region [1,2].
Incompressibility requires that the inflow velocity v; and
outflow velocity (~c4, the Alfvén velocity) be related,
v; ~ Acs/L with L a macroscopic length and A the
width of the current layer. Thus, the rate of reconnection
is linked to A. The inductive electric field driving the
current in the dissipation region typically exceeds the
Dreicer field so that resistive magnetohydrodynamics
(MHD) theory is invalid and the plasma is effectively
collisionless. In collisionless plasma electron inertia must
be retained and the natural scale length which appears in
the equations is 8, = ¢/wy., the collisionless skin depth,
although the current layer actually collapses below &8, in
2D models [3.4]. )

Observational evidence suggests that the current layer
is actually much broader than &,. In laboratory experi-
ments of collisionless reconnection A ~ 10c/wpe [5].
The magnetopause current layer at the interface between
the solar wind and the Earth’s magnetosphere A ~ 1006,
[6]. In both cases the current layers are highly variable
and produce a broad spectrum of electromagnetic waves
[5,7]. It was previously suggested that narrow current
layers would destabilize the electrostatic current convec-
tive instability which would self-consistently broaden the
layer [3]. This previous work, however, only applies to
very narrow layers (A < c/wpe) and therefore cannot de-
scribe the broadening which is measured in experiments.
In the present manuscript we demonstrate that narrow
current layers of width A = ¢/ wpi = 6; with §; the ion
skin depth, destabilize whistler waves with growth rates
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v exceeding ();, the ion gyrofrequency. The instability is
driven by the cross-field gradient of the parallel current.
We present the results of 3D electromagnetic fluid simu-
lations which demonstrate that as a consequence of this
instability current layers with A < §; evolve to a highly
turbulent state with the current carried by meandering, fil-
amentary streams of electrons of characteristic transverse
scale length &6, embedded in the broader current layer.
We predict that the associated high transport of current
will broaden the current layer out to the ion skin depth,
where the magnetization of ions greatly weakens the
instability [8].

We proceed by deriving a set of nonlinear fluid equa-
tions describing the evolution of thin current layers. We
strictly focus on the unmagnetized ion limit 3/dz > (;
and further neglect the ion unmagnetized response. The
uncoupling of the ions from the electron dynamics is gen-
erally valid for §;V > 1 [9]. At these short scales elec-
trons form current loops and simply leave the ions behind.
The dynamics are described by [10]

aB/at + cV X E =0, 1)

4

1 4
E=—JXB+ §—
¢ neJ ¢ c dt

J, 03

with (2) being the electron momentum equation and J =
(¢/4m)V X B = —nev where the density n is a space in-
dependent constant since charge separation is neglected
and the ions are immobile. In a homogeneous plasma
(1) and (2) describe whistler waves at long wavelength
(k8. = 1) and electron cyclotron waves at short wave-
length (k8. = 1). In the presence of an ambient gradient
of the parallel current these waves can become unsta-
ble. To show this we consider an equilibrium with a
current J, (x) flowing along the local magnetic field B =
Bo2. To focus strictly on current gradient driven instabil-
ities, we locally take J, = 0 with J, = dJ,/dx # 0. The
local dispersion relation for disturbances with wave vec-
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tors k = (0, k,, k.) is given by

2 2 / I
Y - _56 ( UZ )( '8¢ v”)
L=k 4k 282 — k== ).
0 T (1 + eazp & TR )UKo T kg,

(€))

Without ! (3) describes whistler/electron cyclotron
waves. The v/ can drive a purely growing mode. This
instability criterion is similar to that obtained previously
from the electrostatic current-convective instability [8,11].
The growth rate peaks at yo = |v!| /2 for k8, = 1 and has
the broadest unstable spectrum for modes with k tipped
with respect to the local magnetic field. For a current layer
of width A producing a characteristic jump 8B of the mag-
netic field, o ~ (8B/B)Q.82/A? ~ (§B/B));87/A%.
For the fastest growing modes the assumption that the ions
are unmagnetized requires A < §;(6B/B)"/2. A second
transition occurs for A < 8,(6B/B)/2 when y ~ Q..
For such narrow layers the local stability analysis leading
to (3) breaks down since k ~ 8! = A~!. For A = §,
the electron inertia in (2) dominates the remaining terms.
Thus, to lowest order

dY/dt =0, 4)

which is the usual momentum equation for a neutral fluid
in which the electrons rather than ions govern the dynam-
ics. The well-known neutral fluid result is that a local-
ized region of flow of scale length A is unstable to the
Kelvin-Helmholtz instability for k, = A1 with characteris-
tic growthrate y ~ v,/A = .. Inthis case k, = 0. For
a current layer with A = §, the electron Kelvin-Helmbholtz
mode is the dominant instability while for A > §,, the
electron Kelvin-Helmholtz mode is stable and the strongest
instability occurs for k£, # 0 as given in (3).

In addition to understanding the nature of the turbu-
lence produced by the electromagnetic current-convective
instability, we must explore the impact of this turbulence
on the global current profile. To do this we derive an
equation for the average current by assuming that the av-
erage properties of the turbulence and the global profiles
depend only on x. The equation for J is

d = 1 9 — eVl d—u Ao
82(— - ——1 >+(—) ——B.B=—E.
¢ atJ ne dx J 471 ) ne ox 47

(5)

By assuming further that there is a separation of scales
between the averaged and fluctuating quantities, and
focusing on perturbations with £, # 0 so that the second
v; term in (3) can be neglected, we obtain a transport
equation,
20~ 9 9= 3 = _ e
% (6tJ axD" axJ) ax < D.B 47TE’ ©)

D, — f A VIOV, 7
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FIG. 1.
times.

Contours of constant J. in the x-y plane at several

D, = [ dar Vx(t) (J/ _ 4;8;2VI|V?1>V¥(T) /JI (8)

The bar indicates an average over the fluctuations and
V, is perpendicular to B and x. Both D, and D, are
diffusion rates of the electron fluid [the first term in (8)
exceeds the second for instability]. D, causes anomalous
transport of the current while D, yields an anomalous
resistivity. In a localized current layer, D, and D, are
spatially localized so that the integrated current across the



VOLUME 73, NUMBER 9 PHYSICAL

REVIEW LETTERS

29 AuUGUST 1994

o0

i

20 4.0

FIG. 2. Contours of constant J, in the x-z plane.

layer is not affected by the turbulence. Namely, there
is no net drag because the ions do not couple with the
electrons.

Information on the transport rate and its scaling can be
obtained by normalizing (1) and (2). Taking the space and
time scales as the current layer width A and the associated
whistler propagation time 7, = A2/82Q),, we find

5";(1 — 52V)B + V x (J X B)
~5 X -V =0, 9

where J = V X Band §, = §,/A and the jump 8B of the
magnetic field across the layer are the only parameters.
Thus, D, (or D,) is given by
D, = 8Q.f(5.,8B), (10)
where f is an unknown function. For 8, > 1, (9) [or
(4)] is independent of B and 8, so that f « §B and
D, ~ 828Q,. For 82 <« 1, y ~ Q,82forV, ~ 6;! so
a simple mixing estimate yields f ~ 62 < 1.
We have written a code to advance (9) on a 3D grid.
The fields are taken to be periodic in all three directions.
The initial state is given by B,(x) = —8Bcos(wx) and
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FIG. 3. Magnetic field in the x-y plane and B,.

BZ = 1 — B2 with low level random perturbations in all
components of B. In the physical system the current is
maintained by the inductive reconnection electric field.
To model this we include an ad hoc source electric field
Eosin(7x) which is adjusted to maintain the cos(wx)
component of B, equal to its initial value. The equations
are advanced in time until the level of turbulence is
quasistationary and the current driven by Ej is balanced
by transport. The results are insensitive to the length L,
and L, of the computational box for L,, L, sufficiently
large.

We have completed a series of simulations with dif-
ferent values of 8, for 6B = 0.5. For 42 = 1 the current
layer is very strongly unstable to Kelvin-Helmbholtz distur-
bances with 3/dy ~ 0. For §, < 1 growing disturbances
are tilted in the y-z plane as predicted by the linear dis-
persion relation. In Figs. 1-3 we present results from a
simulation with 8, = 0.05 on an 85° grid. In Fig. 1 is a
series of contour plots of the primary current J, in the x-
y plane at a fixed z illustrating the time evolution of the
current sheet. At an early time in Fig. 1(a) the current is
peaked around x = 0.5 and is zero at x = 0,1. Distur-
bances are growing in the location of the largest current
gradient. In Fig. 1(b) a large scale instability distorts the
entire current profile. The instability sweeps the current
up in a snowplow manner producing locally steeper gra-
dients of J,. Secondary instabilities grow on these local
gradients. At late time in Fig. 1(c) the entire current layer
has broken into a filamentary structure consisting of ran-
domly distributed slabs of current with a transverse scale
length ¢/wp.. The general features of this final state per-
sist although the detailed orientation of the current lay-
ers changes rapidly. In Fig. 2 we present similar con-
tour plots of J, in the x-z plane at times corresponding
to Figs. 1(b) and 1(c). The primary B, field is horizon-
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tal in these plots and the current flows form left to right.
The strong variation along z in Fig. 2(a) is markedly dif-
ferent from what would be expected from standard MHD
magnetic reconnection in this geometry where to lowest
order 9/dz = 0. In Fig. 2(b) we show that the current
filaments in Fig. 1(c) have a finite extent along z. The
current at the left side of Fig. 2(b) has been split with
a portion of the current moving upward to the right and a
portion moving downward to the right. In Fig. 3 we show
the magnetic field in the x-y plane at the time correspond-
ing to Fig. 1(c). The y-z averaged magnetic field B, is
also shown. A surface of section of the magnetic field at
this time reveals that B is fully stochastic. Although the
instability is nominally purely growing, the local values
of E and B change rapidly in an erratic manner and the
frequency spectra of the fluctuations are all broadband es-
sentially featureless up to {2,. The value of E, required
to maintain B, at late time is of order 0.2.

Whether the turbulence in the simulations acts as an
effective viscosity on the current or as a resistivity is not
obvious, especially since there is really no separation of
scales as required to derive (6). Two observations suggest
that the turbulence acts as a resistivity. First, the fluid
transport rates in all three directions are comparable. If
(6) is approximately valid, the resistive term dominates
because 6, < 1. Second, the spatial (x) variation of the
momentum flux in (5) matches nearly precisely B(x),
consistent with the dominance of D, in (6). Balancing
resistive diffusion with the source Ey in (6) we obtain
f ~ 0.1. Thus, the transport greatly exceeds that expected
from the quasilinear estimate, f ~ 0.0025. Physically the
localized current layers in Figs. 1 and 2 are much more
strongly unstable than a laminar current layer. Based on
the present large rates of transport and the expectation that
transport will be reduced when the ions are magnetized,
we expect the current layer to broaden to a width A ~
8:(6B/B)V?. The corresponding magnetic reconnection
inflow velocity is v; ~ 8;ca(6B/B)*/?/L, which when
dB/B ~ 1 greatly exceeds estimates based on a 6, scale
length.

These results have implications for two physical sys-
tems: the magnetopause current layer and tokamak saw-
teeth. The estimated width of the magnetopause current
layer based on satellite measurements [6] is consistent
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with the scale length §;. The measurements of broadband
electric and magnetic fluctuations peaked in the current
layer [7] also support the current as the source of the fluc-
tuations. In the case of tokamak sawteeth the outstanding
unresolved issue is why the safety factor ¢ remains below
one after the sawtooth crash [12] and specifically whether
magnetic reconnection continues through the entire saw-
tooth crash or the magnetic island formed during recon-
nection saturates at a finite amplitude. What is needed
is a reconnection detector. Whistlers may provide such
a detector. Simple calculations based on WKB ray trac-
ing indicate that whistlers generated during the sawtooth
crash will escape to the edge where they may be measur-
able with probes.
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