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Analytic Model for Halo Formation in High Current Ion Linacs
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We construct an azimuthally symmetric 2D model for halo formation in high current ion linacs. The
driving term, a "breathing" oscillation caused by a transverse mismatch along the linac, leads to growth
of ion amplitudes in the core through the parametric resonance. As the ion amplitude grows, its wave
number increases, enhancing the resonance. This leads to the formation of a halo surrounding the core.
We explore the dependence of this mechanism on the tune depression and the size of the mismatch.
The model agrees well with simulations at Los Alamos, but does not yet include the effects of chaos
observed in the simulations as the tune depression becomes severe.

PACS numbers: 41.85.—p, 29.17.+w, 29.27.Bd

I. Introduction. —High current, high duty factor ion
linacs have become increasingly attractive in recent years.
Among possible applications are heavy ion drivers for
thermonuclear energy production, production of tritium,
transmutation of radioactive wastes, and production of
radioactive isotopes for medical use.

Obviously, it is desirable to accelerate the maximum
possible current in such linacs. Much work has been
done to explore the optimum transverse phase space dis-
tribution in such beams. In particular, the Kapchinsky-
Vladimirsky (K-V) distribution [1] is simplest to analyze,
since this projection into real space has a uniform density
and therefore linear space charge forces. The stability
of the K-V distribution has been analyzed and approxi-
mately confirmed by numerical simulations. Neverthe-
less it appears that, particularly at high currents, the
K-V and other equilibrium distributions evolve to ones
with rounded edges and tails. In many cases involving
high peak current, the distribution spins off a cluster of
particles in the form of a halo surrounding a dense core.
This halo is seen in simulations as well as in actual linacs,
such as LAMPF [2]. And efforts to remove the halo by
collimation have been largely unsuccessful since the halos
almost always regenerate.

It is clear that the halos will produce unacceptably high
levels of radioactivity in high current, high duty factor
linacs. For this reason considerable effort has recently
been devoted to exploring their detailed structure and un-
derstanding the mechanism or mechanisms by which the
halos are produced [3—6]. What has been learned is that
halos are most likely to be produced at transition loca-
tions, such as where there are discontinuities in frequency,
structure geometry, transverse focusing pattern, accelerat-
ing gradient and phase, etc.

In the present paper, we propose an analytic model
for halo formation which appears to reproduce the main
features seen in simulations and in actual linacs. In
particular we consider a circular cw beam with a K-V
core distribution and explore the motion of individual ions
passing through the core. Since energy transfer between
ions and the core can take place only if the core has a time

dependent behavior, we consider the driving mechanism
to be a "breathing" oscillation of the core. We then
explore the resonant (parametric) interaction between the
breathing core and the ions oscillating about and through
the core. Of particular importance is the dependence of
the frequency of each oscillating ion on its amplitude,
which is related to the fraction of the oscillation for which
the ion is within the core.

In spite of the fact that the actual distribution will
have nonlinear fields, the use of a K-V distribution for
the analysis leads us to a very likely mechanism for the
development of the halo. In particular, the results provide
an explanation for the low density region around the core
which is surrounded by a somewhat higher density halo
ring. This explanation will probably still apply for other
self-consistent distributions.

II. Model. —We consider an azimuthally symmetric
K-V core of radius a for which the equation of motion
of an ion is

K a, r a
Kr, r~a (2.1)

where the prime stands for d/dz, and k is the wave
number of the transverse motion in the absence of space
charge. The perveance of the beam, tt = eI/2~epmv3, is
a dimensionless parameter proportional to the current I,
where e, m, and v are the charge, mass, and ion velocity,
and eo is the permittivity of free space. The equation for
y is identical to Eq. (2.1).

We now assume a core oscillation of wave number p of
the form a a(1 —e cospz) and expand a 2 in Eq. (2.1)
to first order in e, the relative oscillation amplitude. After
some algebra, Eq. (2.1) can be written as

2 x / a'l
+ q « = ——«I 1 ——IH(r —a)a2 ( r2]

26K+ «cospzO(a —r), (2.2)a

where 8(u) = 1,0 for u ) O, u & 0 and where q =
Qk2 —~/a2 is the wave number of oscillations within
the core.
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6K+ 2, r cospzO(a —r) .

(2.3)
The first term on the right makes the oscillation wave
number depend on amplitude and the second allows for
energy transfer between the core and the oscillating ion.

In order to understand the role of the different terms in

Eq. (2.3), we construct a simplified model by setting L =
0 and invoking a pendulum model for the first term on the
right side of Eq. (2.3) by replacing r(1 —a /r )O(r —a)
by r /az, corresponding to the cubic nonlinear term for
a pendulum. (However, its sign is opposite from the
conventional pendulum since, in our model, the wave
number increases with increasing amplitude. ) In addition,
we extend the driving term to all values of r. The
simplified equation for x is therefore

K x3 EKx" + q x = ———+ 2 xcospz. (2.4)
a a a

We now use the phase-amplitude method by writing
x/a = A sing, x'/a = qAcosf, where P = qz + a. , im-

plying A'sing + Au'costil = 0. Here A and u are taken
to be the slowly varying amplitude and phase parameters
of the ion oscillation. Substituting into Eq. (2.4) and solv-

ing for A' and n' we obtain

A' = — [A sin icos/ —ea sin2gcospz], (2.5)
qa4

n' = [A sin P —2ea sin Pcospz]. (2.6)
qa4

We now average over all rapidly varying oscillatory terms
with the exception of the one with wave number 2q —p
(the parametric resonance) and obtain

E'K
A' = Asin+,

2qa
(2.7)

W' = (2q —p) + A + cosql', (2.8)
3K 2 EK

4qa4 qa2

where W = (2q —p)z + 2n is the phase of this resonant
interaction. One then finds that an integral of the motion
exists, enabling us to write [7]

3 C
icos% = 5 ——w— (2.9)

8 w
'

where w = Az/a2, 5 = q(p —2q)a~/K, and where the
integration constant C is determined by the initial values
of w and 2a. By resorting to the envelope equation we
can show that p2 = 4q~ + 2v/a2 for the breathing mode,
so that

With the radial forces of Eq. (2.2), we see that the
angular momentum Lqa —= xy' —x'y = r 0' is constant.
The equation for radial motion then becomes

L a K | ar" +q r — = ——r 1 ——0'r —a
r3 a~ ( r2

charge. In Fig. 1 we plot icos'I vs w for q//k = 0.412.
5 = 0.35, and various values of C. For e == 0.1, the polar
plot of w vs q' is shown in Fig. 2. It is clear that 0
is an unstable fixed point and that the origin and 5 are
stable fixed points. Figure 2 is equivalent to a "second
order stroboscopic plot" for integral values of p.-/2rr,
and contains the main features of the resonant interaction.
Specifically, all trajectories starting within the inner
separatrix (thick solid curve) bounded by Pand Q oscillate
in stable orbits while any trajectory starting just outside
will travel along the outer separatrix (thick dashed curve).
For these particles, as the amplitude of motion grows
the true oscillation wave number increases, enhancing the
resonant term and locking in to the resonance. And the
presence of a thin distribution of trajectories near the outer
separatrix has the appearance of a halo in x —

y space at
the radius corresponding to R in Figs. 1 and 2.

We now drop the simplified model and return to
Eq. (2.3). Although the algebra is far more complicated
we eventually obtain a more accurate version of Eq. (2.9)
with a very similar set of curves to those in Figs. 1 and
2. First we rewrite Eq. (2.3) for the variable s = r2/a'-,

obtaining
(s')-'s" — + 2q" s ——

~

= ——(s —l)O" (s —1)
25

+ 4, scospzO(1 —s).
a

eos(2qz + y).

and use Eq. (2.11) and the required connection between
w' and y' implied by Eq. (2.13) to obtain explicit expres-
sions for w' and y'. We then average over oscillations at

0.5-
: icos'P

0. 4

0.2

(2.11)
Guided by the parametrization of the x and y motions
separately, the amplitude-phase parametrization of the
two-dimensional oscillation is written as

2w2 + L- w —L-
(2.12)

2w 2w
Here w and y are slowly varying amplitude and phase
parameters which would be constant if the right side of
Eq. (2. 11) vanished. We now write

w L"
s' = q sin(2qz + y) (2.13)

(2.10)
1 + Q(1 + k /q )/2

where q/k is the tune depression caused by the space

-0.2

FIG. 1. Plot of ecosoc vs w: for the simplified model with
5 = 0.35.
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FIG. 3. Plot of ecosoc vs ~ for the exact model with 4 =
0.35, L = 0.
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FIG. 2. Polar plot of w vs W for the trajectories corresponding
to the parametric resonance using 6 = 0.35, e = 0.1, and the
simplified model.

f(L) f f f f d&dyd& dy 8~1 & + y

3.1)
We first do 45' rotations from the x/a, y'/qa space to the

u, u' space and from the y/a, x'/qa space to the u, u'

space and follow this by integrating over the polar angles
in the uv' and vu' spaces. This leads to

all wave numbers except 2q —p, being careful to include
the step functions as we obtain these averages. The final
equations for w' and 4' [W = (2q —p)z + y] are simi-
lar to Eqs. (2.7) and (2.8) and again lead to an integral of
the motion, which now is s —t

f(L) —
I ds i dt B(s + t —l)B —L

~

I

2 )
g(1 —h)icos% = fA —t —C, (2.14)

where f(w) = (w2 + L2)/2w, g(w) = (w —L )/2w.
Here

(3.2)
0, 2ILI » '

where s = u + (v')~ and t = v2 + (u')2 arebothpositive.
Therefore the distribution in L for a K-V beam is uniform
from L = —1/2 to L = 1/2 and vanishes for ~L~ ) 1/2.

IV. Imp/ications of the model Since t. h—e breathing
K-V beam is a solution of the Vlasov equation, particles
within the core will continue to remain there, even in
the presence of the resonant interaction. If however,

m. h(w) = tan 'P'/(1 —f)] + 8(1 —f)/2g (2.15)

0

-3 -2 -& 0

FIG. 4. Polar plot of ~ vs W for the trajectories corresponding
to the parametric resonance using 5 = 0.35, L = 0, e = 0.1,
and the exact model.

for w ~ 1 and E(w) = Q(w —1)(w —L2)/w. Also

1 "dw
t(w) =— (g —f) tan

n i wg (1 —fj
, (2W&+ f8+ Ltan ', , (2.16)L')-

for w ~ 1, and h(w) = t(w) = 0 for w ~ 1. The arc-
tangents are taken to be in the first or second quadrant.
The term in b(w) comes from the amplitude dependence
of the ion wave number. A more accurate expression for
b(w) can be obtained, if necessary, by solving Eq. (2.6)
with e = 0.

Since the resonance will have its greatest effect when
L = 0, corresponding to ion orbits which pass through the
core center, we present a plot of

ecosoc

vs w for 5 = 0.35
and L = 0 in Fig. 3. The pattern of curves is very similar
to that in Fig. 1, and the w, W polar plot in Fig. 4 for
e = O. l has the same topology as for the simple model in
Fig. 2, as is also the case for L 4 0. But the scale for w

is about 7 times larger, corresponding to a detuning with
amplitude about 7 times smaller than that given by the
3/8 factor in Eq. (2.14).

III. Distribution of L in a symmetric K Vbeam —The-.
distribution in L for a K-V beam is proportional to
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some other mechanism moves the particle outside the
core, particularly to an oscillation amplitude exceeding
that corresponding to the points P or Q in the figures,
a halo will develop at a radius corresponding to point
R in the figures. The most likely mechanism to do
this is an instability associated with a nonlinear density
perturbation. In addition, simulations show that chaotic
motion develops near point Q in the figures for a
large amplitude breathing mode at high current, enabling
particles in the core to populate the halo.

V. Summary and discussion. —We considered a sym-
metric K-V beam undergoing a breathing mode and found
that the parametric resonance (2q = p) is a vehicle for
particles to leave the core of the beam and perform ex-
cursions to large amplitude, forming a distribution in real

space in the form of a halo. In this calculation, we ne-

glected the effect of high frequency terms, and the ef-
fect of other possible resonances and driving oscillations.
Thus our model, which successfully describes a mecha-
nism by which halos can and probably do form, is only an

approximation to a much more complicated situation.
We have compared our predictions with some prelimi-

nary simulations performed for L = 0 by Wangler [8],
and find that, for tune depressions from q/k = 1 to 0.6,
the topology of the stroboscopic plot resembles Figs. 2
and 4 very closely. For tune depressions below 0.6, the

stroboscopic plot shows the onset of chaotic behavior in

an ever widening band near the inner separatrix as the

tune depression deepens. Particles inside but near to the

inner separatrix are then able to move outside the inner

separatrix and participate more easily in the development
of the halo.

Wangler's simulations using a K-V beam [8] confirm

that core ions always remain within the inner separatrix.
It is quite possible for core ions to lie outside the

equivalent inner separatrix for nonuniform equilibrium

charge density distributions. We therefore expect the halo
mechanisms in the present model to apply to non-K-V
beams as well. Lagniel s simulations [6] give similar

results, showing the onset of chaos for high space charge
as well as the similarity with the three-body astronomical

problem.

Our present model is unable to describe either diffusion
or chaos in the w, W phase space. If we were to try
to do so we would have to include the neglected high
frequency terms, as well as resonances other than the one
corresponding to the parametric resonance. Integrals of
the motion corresponding to Eq. (2.14) would no longer
be valid. Descriptions of the growth of halos including
the effects of chaos and diffusion will require further
analysis and/or extensive numerical simulations.

The author would like to thank Alex Dragt, Bob
Jameson, Pierre Lapostolle, Ron Ruth, Rob, Ryne, Fred
Skiff, and Tom Wangler for several helpful comments.
He is also indebted to Dan Abell for performing the
calculations leading to Figs. 1—4.
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