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Subfemtosecond Pulses in Mode-Locked 2m Solitons
of the Cascade Stimulated Raman Scattering

A. E. Kaplan
Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, Maryland 21218

(Received 19 April 1994)

We predict multifrequency 2~ solitons in the cascade stimulated Raman scattering, mode locked by
the dynamics of Raman quantum transition; they are "eigensolitons" of a general solitary wave solution.
Soliton components at each individual frequency are "bright" pulses of the same, Lorentzian, shape;
their interference gives rise to the train of well resolved high intensity subfemtosecond pulses.

PACS numbers: 42.65.Dr, 42.50.Md, 42.50.Rh

Generation of very short coherent pulses with high
repetition rates has a great importance for various appli-
cations in both fundamental and applied physics. The
shortest to date optical pulse length of 6 fs based on
the pulse compression technique was achieved in 1987
[1]. New opportunity offered by a Fourier synthesizer
[2] allows one to generate subfemtosecond pulses (SFP)
by superposition of equidistant frequencies from sepa-
rate lasers synchronized by nonlinear phase locking [3].
In this Letter we propose a new approach based on
using multifrequency cascaded stimulated Raman scat-
tering (CSRS) in which the equidistancy of frequen-
cies is sustained automatically, and Raman components
are mode locked within a 2m. soliton reminiscent to
the self-induced transparency (SIT) solitons [4) and re-
lated to the quantum dynamics at the Raman transi-
tion. We show that Raman active materials (with the
transition frequency coo) can support solitons consist-
ing of pump laser wave (with the frequency roL, ) and
many Stokes and anti-Stokes components with their fre-
quencies ~J = ~L ~ jcuo, j = 1,2, 3, . . . . These solitons
have a new, very simple, Lorentzian intensity profile first
found in Ref. [5] for two (laser + Stokes) components
(and for three components in [6]). However, in contrast
to [5,6], the new solitons consist of many mode-locked
frequency components, whose coherent interference give
rise to the train of ultrashort pulses (spaced by 2m/apo)
with their length being as short as or even shorter than
the pump cycle, 2m. /toL. One can relate this effect (in
which the 2m soliton plays a role of traveling shatter)
to mode-locked laser pulses formed by the coherent in-
terference of many modes. In the proposed effect, how-
ever, the pulse formation occurs at the time scale up to
5—6 orders of magnitude shorter than in the mode-locked
lasers. The difference between this new phenomenon and
the well known bright + dark SRS solitons [7] is that all
the frequency components of the new soliton are bright
pulses; all of them propagate with the same group veloc-
ity and, in the case of eigensolitons, have the same shape.

High-order CSRS required for the proposed phenome-
non was first observed experimentally [8] and understood
[8,9] in the early 1960s, with the total number of com-
ponents up to -10—20 and even higher [10]. The other

required effect —"all-bright-SRS" solitons —has never, to
the best of our knowledge, been observed in experiment.
Their threshold nature stipulates properly chosen group
dispersion, driving intensity and frequency, and suffi-
ciently short driving pulse. Recent estimates [6] showed
that the materials can be found to meet these requirements
for two components, with the intensity requirements be-
ing very modest. Similarly, material and laser parameters
could conceivably be found to satisfy the threshold con-
ditions for CSRS solitons, with a reward for this effort
being substantially high.

In the plane-wave approximation, the total CSRS field
has M = Ms + Mq + 1 components (where Ms is the
number of cascade Stokes and M& the number of anti-
Stokes components) colinearly propagating along the axis
z, and can be written as Re[+, " ~ E,(t, z) exp(ik, z
i ro, t)], where EJ(t, z) is the envelope of the jth com-
ponent, k, = to, n, /c, and n, = n(to, ) is the refractive
index at co, . The Raman quantum transition is de-
scried by the density matrix with nondiagonal elements,
p~2 = p2~, and the difference 5 = p~~

—
p22 between

populations of the lower (ground) level, p», and up-
per (excited) level, p22, p~~ + p2z = 1. Assuming p&2
in the form p~2 = (i/2)o(t, z)exp(ikoz —itoot), where
ko = (kl, —k I,)/(M —1) = ko =— t/oocthe Raman-
coupled Maxwell equations for the envelopes E, (t, z) are
obtained by, e.g., using the procedure [11]as

BEJ/Bz + v BE /Bt = nN, ro (it.cn, )

X r, ~, gj L, aE, ~
—r,*,+,

.
g,*,+, o.*EJ+~, (1)

where v, = dto, /dk, is a group velocity at co, [12];
E (~,+l) = E~„+l = 0; N, is the density number of
Raman particles; g, |,= exp[i(ko + k, ~

—k, )z] is a
phase mismatch factor, and r, &,

——g [(d& . e, )(d 2.
e~ ~)(ro ~

—coi) '+ (d~ . ei ~)(d 2 e~)(to 1+ roj ~) ']
is a nonlinear Raman coefficient [11,13]. Here d~ (d 2)
is a dipole moment of a transition between the lower
(upper) Raman level and the mth quantum level, ra & is
the frequency of m ~ 1 transition, and e~ is the unity
vector of polarization at cu, , the summation is executed
over all the quantum transitions except the Raman one.
Equation (1) is valid when the "local" dispersion near
each of the frequencies is much smaller than the "large
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scale" dispersion between any two adjacent frequencies
which is usually the case in CSRS; we also neglected
absorption assuming that all the CSRS frequencies are
sufficiently far from resonances. The dynamics of the
density matrix variables cr and 5 is governed by the
generalized Bloch equations:

Bo/at .= —ARE, aa/at = Re(o.nR), (2)

BjdXj/drj = wj 1 i tTXj 1 — w +i —tr (4)

where 6, = I/v, —I/O is the group velocity dispersion
parameter [12], w, 1, = ~r, 1,N, (~, lcd, /n, ln, )'j X

(ch) ', and X, =—E, (n, c/2hcu, )'j2 are "flux amplitudes"
(such that iI1, = ~$, ~2 are photon fluxes of the respective
components). Equations (2) and (4) yield two more
integrals:

MA

B,C1, = const = I,

2 g jBjC&,.(g) —AN, E(g) = const = J.
j=—Ms

(5)

the first one being a Manley-Rowe-like integral. Amaz-

ingly, the set of M + 2 nonlinear equations, Eqs. (2)
and (4), can be solved analytically. First, using Eq. (4)
for evaluating d('E,*'E,+1)/dg, and thus dAR/dg due
to Eq. (3), we find out, by using Eqs. (2) and (3), that
d(o.QR)/dp and thus o.QR are real functions. Multiply-
ing the first of Eqs. (2) by tr', we obtain that the phase of
o is invariant, i.e., if o. = p exp(iP ) (with p and @
real), P = const. [Applying this again to Eq. (4), start-
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where QR is a (in general, complex) "Rabi frequency" of
the system; using, e.g., a "generalized two-level system"
approach [11]it is found as

MA —1

QR = (2/h ) g rj&+lgj&~1EjE"+1. (3)
j=—Ms

The first integral of Eq. (2) is b2 + ~cr~ = const = 1.
Since the new solitons are usually a few orders of
magnitude shorter than relaxation times of a typical
Raman transition, the relaxation is neglected in Eq. (2).
Similarly, since the coherent lengths (ko + k, 1

—k, )
())ko ) are usually much larger than the spatial length
of the soliton (which is especially true in gasses or
vapors), we will also assume $, 1, = 1 (for M = 2, i.e.,

laser + first Stokes, g = 1 is an exact relation). As usual
in the SRS theory, we neglected in Eqs. (1) and (2) small
corrections to the group velocities vj and Stark shift of
the Raman frequency coo, which if needed can easily be
accounted for (see, e.g., [11,13]).

Defining a stationary wave (of which solitons are a
particular case) as a solution with all the envelopes

E, , 5, and o. propagating without change and with
the same (unknown at this point) velocity 6, using
retarded coordinates rj = t —z/6, g = z, and stipulating

BEj/Bg = 0, we retain Eq. (2) (with B/Bt replaced by
d/d 1)7and transform Eq. (1) into

ing from j = —Mq, one can see that all the cascade corn-
ponents of the stationary wave are phase locked to each
other. ] Without loss of generality, we can assume now

= 0, i.e., that both o. and AR are real functions. Us-

ing Eqs. (2) and the first integral, A2 + ~o.
~

= 1, 3 and
o- can then be expressed as

COS PR, (6)cr = sin@R.

where pR =—f QR(g) de is a Rabi phase, and the upper
sign corresponds to the atoms being initially (rj —~)
at the equilibrium, 5(—~) = 1, whereas the lower sign
to the an inverse population, 5(—~) = —1, at 21

Introducing p —= f o d21, we reduce Eq. (4) to the set
of M linear differential equations for the envelopes 'E,

by writing it as B,dX, /di/t = w,. 1,, X, 1
—wj, +1'E,+1.

Once the eigenvalues yk of this set are evaluated, its
solution is immediately found as

2'&(1/I) = $ cjke" k, (7)
k=1

Out of M constants c,k in Eq. (7), only M are truly inde-
pendent. For the odd M's (M ~ 3) one of the eigenvalues
is y = 0 [14]. The equation for nonzero y's have the
form of polynomial in y . Its solution in the simplest case
of only two components, M = 2 (i.e., laser + Stokes) [5],
is y = —

~wsL, ~ /BsBL, inthecase M = 3 (e.g. , Stokes+
laser + anti-Stokes, or two Stokes + laser, etc.) it is

[6] y" = (llws, LI /~s~L + lwL~I /~L~~),
in the cases M = 4 and M = 5 it is found as y2 =
—(Bl +- (Bl —B2)' j2), where Bl = g, b, ,+1, with i2, k

=—

lw, ,kl'/~, ~k, and for M = 4, B2 b —M, —M +lbM —l,M. .
while for M = 5, 82 = b-M, , -M, + i bM„-z,M„- &

+
b ~s Ms+ ~ ~MA [ ~A b —MS+].,Ms+2 MA 1,M

Using the Maxwell equations solution, Eq. (7),
and noting that the Rabi frequency, QR = (4/
~N, ) g w, ,+ 1 g, g,', +1, can now be expressed as

M

II, (y) = P Q. (""" (8)

cjoy
= const.

with Qmk (4/'trNa) Zj=l wj j+lcjkcj wl, m~ Qmk Qmki

we reduce the Bloch equations, Eq. (2), to

d p/dpi + [I —(dp/drj) ] QR(tl'I) = 0,
whose general solution is readily found in the quadrature
form:

(
1 — A,R(P) dP (10)dP = g.

Once Eq. (10) is solved for 1/1(g), one obtains o. =
di/I/de, b = v'1 —tr, and, through Eq. (7), all the en-

velopes X, . In general, Eq. (10) gives rise to a rich fam-

ily of solutions: solitary waves, stationary traveling fronts,
bright and dark solitons, periodic stationary waves, etc.
The solutions attributed to more than one eigenvalue y
may be regarded as higher-order solitons. The simplest
and most fundamental are eigensolitons, i.e., those at-

tributed to a single eigenvalue y. (For M = 2 and M = 3

they are only feasible as all-bright solitons [5,6].) In such
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S(r1) = sin p(co)/2(cosh[2r '(rI —gp) sin@(~)]
—

cos P(~));
0, = 4S(q)/r,

(12)

where qp can be assumed zero, P(~) is the initial Rabi
phase, and r —= 1/Re(y) is the soliton length. The area
of the eigensoliton is APrr =—Prr(~) —

Prr (—~) = 2[m. —
/(~)], i.e., not necessarily an integer of rr, a situation
unusual for SIT-like solitons. In the limiting case, PR =
rr/2 (i.e., APR = m. , which corresponds to a m soli-

ton), the eigensoliton has profile S(71) =
2 cosh(2rI/r).

However, this soliton is due to the most unlikely ini-
tial conditions: 5(—~) = 0 and o(—~) = —1. For the
"intermediate" solitons with 0 ( P(~) ( vr/2, the initial
state of the system is 5(—~) = ~ cosP(~), and o.(—~) =
—sing(~) 4 0. Although to prepare initial states with
o. 4 0 may not be an easy experimental task, they are still
feasible (even if the finite relaxation is taken into con-
sideration) if another short pulse is used as a precursor.
Fortunately, however, a regular initial state of the system
[i.e., b (—~) = ~1, o.(—~) = 0] can also give rise to the
eigensoliton with P(~) = 0, i.e., 2m soliton (b, Prr = 2m. );
it has a very simple, Lorentzian profile:

S(rI) = (1+ 4' /r ) ', 5 = [1 —2S(r1)],

a = 4(~/r)S(q),
(13)

which again is unusual for SIT solitons. Under the
condition Eq. (11), in Eq. (5) I = 0, while J = rrN, —
if initially the two-level Raman system is at equilibrium
[i.e., 5(—~) = 1; upper sign in Eq. (6)], and J = rrN,
if the population difference was initially inversed [i.e.,
b, (—~) = —1; lower sign in Eq. (6)].

Each eigensoliton has a unique set of M compo-
nents characterized by photon distribution eigencoeffi-
cients, a, = const, /la, l2 = 1, i.e., X,(g) = a,g4z,
or 4, = la, l 4z, where 4z =—g4, = @pkS(g), with

being a peak total photon flux. Using Eq. (4),
la;l is evaluated as la, l' = lP, l /g, "

~, lP„l, where

P ~, r
= 0, P ~, = 1, andforM~ j ) Ms. /3r+i =—

(w, r,,P, r
—yP, B,)/w, ', r Using Eq. (9.), 4~k is ob-

tained as

4pk = ~rrN, / g JBrla, l,
j= MS

(14)

with the signs corresponding to those in Eq. (6). The total
number of photons in the soliton is

a case, all the coefficients c,r, but one in Eq. (7) vanish,
such that X,. = c, exp(yP). Thus, all the components of
the eigenwave have the same time dependence. Of special
interest is a bright soliton, i.e., solitary eigenwave with its
CSRS components vanishing at the edges,

X, (rr) 0 as lgl

All these components have the same temporal profile,
lX, l

~ S(p), found from Eq. (10) as

Pz =—iI 4z dq = ~4~k/2Re(y). (15)

With Pp or 7- given one can find the velocity of the
soliton v. The conditions Re(y2) ) 0 and 4~k ) 0
impose limitations on the dispersion and nonlinearity of
the system. For M = 2 (and initially equilibrium Raman
states) the dispersion conditions are [5,6] Bs ) 0, BL ( 0,
i.e., vs ( v ( vL (if the population is initially inversed,
the signs are to be inversed, too); for M = 3, see [6). For
M = 2, lar. l' = 1 —lasl' = 1/(1 —~r./~s), r = 1/y =

~s~r. /rsL7rN and Pz = (~/rsL)~sr. /v ~s~L
where BsL —= Bs —BL ——1/vs —1/vL. The soliton
length r, peak photon Aux 4pk and the total number
of photons Pg must satisfy some threshold conditions.
The critical length v;, for M = 2 could be in the range
from a few tens of femtoseconds to a few picoseconds,
depending on material, whereas the critical energy density
for, e.g., Cs vapor [6] could be -0.02 J/cm .

To fully characterize CSRS soliton with M )& 1, in par-
ticular the spectral distribution of the Stokes and anti-
Stokes components in it, for a specrfrc material, one has
to account for a great number of nonlinear spectral char-
acteristics of the material in a very wide range of frequen-
cies, from the far infrared to far ultraviolet. Instead, in
order to illustrate that the SFPs may appear for virtually
any CSRS spectral distribution, we choose here three sub-
stantially different model spectral distributions whereby
the photon fluxes (a) are equally distributed between the
CSRS components, 4, = const; (b) peak in the middle of
the CSRS spectrum and fall off parabolically toward both
of its ends, 4,/4, „= 1 —4(j —j,„)2/M, where j
is the position in the middle of the CSRS spectrum (which
is usually below the driving frequency); and (c) vanish in
the middle of the CSRS spectrum and rise up parabolically
toward both of its ends, 4,/4, „=4(j —j „)'/M'.
We choose a line with Ap = 2.4 p, m (as in a hydro-
gen gas) pumped by the third harmonics of Ti: Sp laser
(Ar. = 0.28 p, m), with 12 components. The oscillations
in time domain for all these cases are depicted in Fig. l.
In our simulation we assumed that the spacing between
the pulses is much shorter than the soliton length r (slight
irregularities seen in Fig. 1 are due to incommensurability
of rpr. and cop). Distinct SFPs are evident in all the cases,
and they are well separated. The length of each individ-
ual pulse is -0.218 fs for the distribution (a), -0.225 fs
for (b), and -0.199 fs for (c), although, as expected, the
pulses with the most inhibited background correspond to
the distribution (b), and with the least to (c). Assuming
a significant portion of energy of the original laser pulse
to be trapped within 2m. CSRS soliton, there is a good
potential for attaining high intensity SFP by compressing
laser pulse into the SFP train. For the above example,
assuming a 100 fs long laser pulse with the cross section
10 cm and energy 10 —10 J, of which about 10%
get trapped into a CSRS soliton of the same length, and
that the major part of radiation is concentrated in SFP, as
in case (b), one obtains the peak pulse intensity of the
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same order of magnitude as the original laser pulse, i.e.,
10' —10's W/cm2 —and even higher for better laser sys-
tems. Since in real Gaussian beams the anti-Stokes com-
ponents are usually radiated away in the far-field area as
narrow cones, the SFPs should be better observed in the
near-field area; however, even if only Stokes components
are left in the output beam, the pulse will be broadened by
only 10%—20%.

In conclusion, we demonstrated that Raman-coupled
multiple CSRS components can form a 2m soliton, with

the coherent interference of mode-locked components

giving rise to the SFP train of large intensity.
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