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Light-induced Torque on Moving Atoms
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We show that a two-level atom moving in a Laguerre-Gaussian beam is subject to a light-induced
torque, 7, about the beam axis which is directly proportional to [, the orbital angular momentum
quantum number of the mode. The torque, which has a Lorentzian frequency response which includes
an azimuthal /-dependent Doppler shift in the detuning term, reduces in the saturation limit to the simple
form T = HKIT, where 2T is the decay rate of the excited state.

PACS numbers: 42.50.Vk, 42.50.Wm

The rotational effects originating from spin angular
momentum associated with circular polarization are well
established properties of light. Research on their influ-
ence on the motion of rigid bodies has a long history with
the first optical experiment by Beth [1] and that in the
microwave region by Allen [2], while the subject has re-
cently been revived by the work of Simon, Kimble, and
Sudarshan [3] and Bretanaker and Le Floch [4].

Recent research has concerned the orbital angular
momentum characterizing some forms of light, for exam-
ple, Laguerre-Gaussian (LG) beams. The corresponding
rotational effects reported to date are those that are mani-
fest whenever transfer of orbital angular momentum from
the light to a rigid body [5,6] occurs. It appears reason-
able that atoms moving in such light beams should exhibit
novel rotational effects, in addition to the expected trans-
lational effects normally encountered. In principle, the
effects involve changes to both the internal and the gross
motions of the atom. As far as the internal motion is con-
cerned, we have recently shown [7] that the Doppler shift
for a moving atom should receive a significant additional
contribution called the azimuthal Doppler shift. This shift
is directly proportional to the orbital angular momentum
quantum number / of the LG mode.

In this Letter we concentrate on the gross motion of
the atom and show that it is also significantly influenced
by the orbital angular momentum of the LG beam. We
derive a general expression for the radiation force acting
on the atom and compare the results with the well known
results for atoms interacting with a plane wave. We show
that there is a nonzero torque associated with the force
acting on a two-level atom in a LG beam. We proceed to
find the asymptotic limits of the results and consider their
significance for the properties of laser-cooled and trapped
atoms and ions in such fields.

The existence of this light-induced torque is entirely
reasonable. An atom interacting with a plane electro-
magnetic wave propagating in the z direction is subjected,
in the saturation limit, to a light pressure force propor-
tional to the wave vector k,. Any azimuthal wave acting
on the atom might be expected to have associated with it a
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wave vector kg4 and a concomitant force. At any distance
from the beam axis such an azimuthal force would exert a
torque on the center of mass of the atom.

The system investigated is a two-level atom of resonant
frequency wo, interacting with a single light mode of
frequency w. In the electric dipole and rotating wave
approximations the Hamiltonian may be written as a
Heisenberg operator

2

P
H = ﬁwowf'rr + '2—H +hwafa

—iki{mtafR) — f*R) a7}, (1)

where P and R are the momentum and position vectors of
the center of mass with total mass M, 7 and 7T are ladder
operators characterizing the internal two-level system, and
a and a' are, respectively, the annihilation and creation
operators of the light field. The operator f(R) stems from
the electric dipole interaction —d - E(R). We may write

f(R) = N[Dy; - £(R)], 2

near £ is the amplitude vector field associated with the
mode, N is a normalization factor, and D, is the electric
dipole matrix element.

The Hamiltonian in Eq. (1) does not include term for a
trapping potential, U(R). It can be readily confirmed that
the effect of U(R) can be trivially accounted for in the
final expression for the force by adding the term —VU(R).

The time evolution of the atomic linear momentum
P(z) emerges formally as an integral of the Heisenberg
equation of motion. We have

P(1) = PO) + + fo HE) PO 3)

We obtain using Eq. (1)

P() = P(0) + ik f [rt@a@)vrw)
0
- Vi ) w))dr . @)
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To evaluate the integral in Eq. (4) we need to substitute
the appropriate time dependence of the operators within
the curly brackets. Such time dependence may also be
deduced for each operator from the basic Heisenberg in-
tegral analogous to Eq. (3) and need only be evaluated to
leading order of perturbation. We find that the expecta-
tion value of P(z) in an arbitrary state |¥) of the unper-
turbed system (internal and gross motion of the atom plus
radiation field) is given by

(P@) = Py + ii{n(2n, — 1) + n.}
X [f;Vf()Il (Y) - C.C.] . (5)

where n, = (‘I’Im)T ol W) is the occupation probability of
the excited state and n = (‘I’Ia(;r ao| V) is the mean photon
number. The time dependence is manifest only in the
integral /,(r) and its complex conjugate where

L(1) = [0 JRINGE) (Si"(AA/’Z_/Z))dtC (6)

where A = wy — w + & is the effective detuning which
takes account of the Doppler and recoil mechanisms with
é formally given by [7].

az_iw(P-Vf+Vf-P)
M f -

(7

Here the subscript zero denotes operators at the initial
time t+ = 0. The Doppler and recoil shifts implicit in
Eq. (7) were the subject of another investigation, as has
recently been reported by the present authors [7].

The total force acting on the atom is given simply by
the time derivative of (P(¢))

d
(F(1)) = E<P(t)>
= ih{n 2n, — 1) + n,}
X (f(‘)‘Vfo[%It—l} - c.c.). (8)

In general we can write fo(R) in terms of two real
functions G(R) and ®(R) in the form

fo(R) = G(R) ¢®® 9)

which enables the force to be written as the sum of two
physically distinct contributions

(F) = (Fg) + (Fp) . (10)

The contribution (Fg(z)) may be called the reactive, or
dipole, force [8] and emerges from Eq. (8) in the form
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(Fr(t)) = — 4hi{n2n, — 1) + n,}
sinl(m/z)>

11
3 (rn

X GVG(

The reactive force depends upon the field gradient which
attracts the atoms to regions of intense field and has
been exploited in atom trapping experiments. The other
contribution (Fp) is the dissipative force, also called
radiation pressure or scattering force as it originates from
the absorption-emission cycle [8], and takes the form

(Fp(t)y = —2i{n(2n, — 1) + n,}

x give (EL)

(12)
We can check that the above general results give rise

to the well known results for an atom in plane polarized

light for which VG = 0 and VO = k. We then have

sin(An))

(Fg) =0, (Fp)= 2ﬁkn62( (13)

where for simplicity we have assumed that the initial
excited state population is zero, that is, n, = 0. The
frequency response appropriate for the steady state can be
introduced simply by correspondence with the well known
case of plane polarized light [8]. We can replace [9] the
delta function which occurs in Eq. (13) in the steady state
(long time) limit with the Lorentzian I'/(I'? + 2nG? +
A?), where AT is half the width of the excited state and
the denominator term 2nG? represents power broadening
[10]. This allows the finite width of the energy levels to
be introduced even though we have considered only one
radiation mode. We then recover the familiar result for
the light pressure force [8]

1

Fo) =K

(14)

where I = 2nG?/I'?. This expression has also been
derived for a plane wave and a two-level atom using
the density matrix approach [11]. In the saturation limit
I — = we obtain the well known result

(Fp) = hkI'. (15)

In the case of a plane wave the force is seen to be
independent of the atomic position and it has zero torque
(r X Fp) relative to the beam direction. This should be
contrasted with the case of a linearly polarized LG beam
which gives rise to a force, based on the general form
described in Egs. (8)—(12), with which can be associated
a nonzero torque acting on a moving atom.

For a LG beam characterized by the indices n and m the
functions may be relabeled as G, ,(R) and 0, ,(R) and



VOLUME 73, NUMBER 9

PHYSICAL REVIEW LETTERS

29 AUGUST 1994

may be written in cylindrical coordinates R = (r, ¢,z) as
follows [12]

jn—m|
Gnm (R) = —jijwD (—l)mm(m,n) nm r\/_
w(z) \ w(z)
—r2/w?ln—m 27'2
X e 2/ lenin(nI,m)<W),
(16)
Onm (o, 2) = —(n+m + D) ~ 1
kr?
kz — 27

where, for convenience, we have assumed a dipole ori-
entation along the x axis such that D;; = DX. A more
careful consideration of general dipole orientation will be
given in a subsequent full length paper. The order of
the LG mode is n + m and its orbital angular momentum
quantum number is / = |n — m|. The quantities z, w(z),
and ¢(z) are expressible in terms of zg, the Rayleigh range
zr = 7wg/A with wg the beam waist. We have

2 2 2 2
+ +
PR S S NP Y G Tk i
z 2 2R
¥ (2) = tan™! (i) (17)

while C, ,, is a normalization factor [6]. In this case both
VG, and VO, , are nonzero. A vanishing VG, , means
that we have a nonzero reactive force (Fg) as given by
Eq. (11).

Much more important is the profoundly different form
of the dissipative force when compared with the plane
wave case. We have from Eq. (12), as appropriate for the
steady state,

2nG?, T’
(FD>n,m = HV@n,m( >

I'2 + 2nG2,, + A2>' (18)

The evaluation of V@, , can be carried out in cylindrical
coordinates. We find

o (- (2)s

kr? 272
-k - 2 2 2 1
2(z2 + zp) \ 22 + zk

n+m+ l)zR]A
|
22 + zx

(19)

We see that, in general, we have nonzero force com-
ponents in all three directions (%, ¢, 2) of the cylindrical
coordinates. In particular, a significant contribution arises
in the form of an azimuthal component. This is respon-
sible for a nonvanishing torque around the beam direction
given by

<TD>n.m = <l' X FD>n.m
= 2(rFy),,, - (20)

This torque has a magnitude that can be explicitly written
in a form analogous to that in Eq. (14)

I
1+ 71+ AZ/I‘Z)' @n

KTp)nml = mr(
In the saturation limit J — o we obtain the orbital angular
momentum analog of Eq. (15)

KTp)pml = IAT . (22)

This novel result is as remarkably simple as the saturation
force in Eq. (15).

In conclusion, we have outlined derivations for the
forces acting on a two-level atom moving in an arbitrary
field distribution. We have shown that for the case
of a Laguerre-Gaussian mode, which possesses orbital
angular momentum, the forces are modified relative to the
usual case of a plane wave. In particular, an azimuthal
component of the dissipative, or radiation pressure, force
exists which in the steady state leads to a nonzero torque
acting on the atom around the beam axis. This new
feature is consistent with the appearance of an azimuthal
Doppler shift reported recently by us [7].

Both the azimuthal shift and the light-induced torque
are physically related to the helical winding of the
Poynting vector field about the beam axis [5]. In a
Laguerre-Gaussian mode of the Poynting vector at any
point is a tangent to a helix. At such a point the wave
may be regarded as a local wave with its wave front
normal to the Poynting vector. The azimuthal part of this
local plane wave gives rise to the azimuthal force and
its associated torque, as well as to the azimuthal shift in
resonance.

In the saturation limit a plausibility argument may be
given which shows that the results are reasonable. The
LG field is proportional to e~ ¢ but could be thought of
as being proportional to e ~** where x is an infinitesimal
length of azimuthal trajectory. Then at a distance r
from the beam axis, ¢ = x/r and hence k, = [/r. The
corresponding azimuthal force, given by the well known
result for Fp as in Eq. (15), becomes F, = hk,I" which
makes the associated torque [AT.

It would appear that such a torque should play an
important role in interactions between atoms and standing
light fields [13], in crossed beams and in cooling experi-
ments as well as in ion traps if LG beams were to be
used instead of the usual fundamental laser modes. A
converging laser beam focused with a cylindrical lens has
been used [14] for transverse cooling and the deflection
of atoms.
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from the United Kingdom Science and Engineering Re-
search Council.
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