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Classical Analysis of Phenomenological Potentials for Metallic Clusters

W. D. Heiss' and R. G. Nazmitdinov *
Centre for Nonlinear Studies and Department of Physics, University of the Witwatersrand, PO Wits 2050,

Johannesburg, South Africa
Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid, Spain

(Received 11 April 1994)

The classical trajectories of single particle motion in a Woods-Saxon and a modified Nilsson potential
are studied for axial quadrupole deformation. Both cases give rise to chaotic behavior when the
deformation in the Woods-Saxon and the I term in the modified Nilsson potential are turned on.
Important similarities, in particular with regard to the shortest periodic orbits, have been found.

PACS numbers: 36.40.+d, 05.45.+b

Recent experimental results on metallic clusters report-
ing abundance variations in mass spectra, ionization po-
tentials, static polarizabilities and collective giant dipole
resonances, barrier shapes, and fragmentation provide us
with striking manifestations of shell structure effects re-
lated to a quantized motion of the valence electrons [1].
The correspondence of the electronic shell structure in
spherical clusters to the closing of major quantal shells
[2—4] caused considerable interest in using nuclear shell
model type calculations for the description of metallic
clusters [5—9]. It turns out that phenomenological poten-
tials used traditionally in nuclear physics serve a purpose
similar to those obtained within the Kohn-Sham density-
functional method [10] if the relevant parameters are ad-
justed appropriately. Typical potentials are the Woods-
Saxon (and its various modifications) and the modified
Nilsson potential without spin-orbit term. The consid-
erable lowering of the computational time due to their
simple analytical form renders an analysis of the stabil-
ity of large metallic clusters feasible. Naturally, the shell
numbers have to be larger than the ones used in nuclear
physics in accordance with the larger number of valence
electrons considered for metallic clusters. For mesoscopic
objects like clusters, deformations, i.e., deviations from
spherical synunetry of the potential, are as important as in
the nuclear physics context. Metallic clusters can be seen
as a "gift of nature" towards a deeper understanding of the
formation of shell and supershell structure which is a gen-
eral feature for any self-consistent theory of independent
particles moving in an average potential.

The existence of shell structures is one of the crucial
questions addressed by previous [5,6,7,9,11]and more re-
cent authors [12—14]. Obviously, shell structure in the
quantum mechanical spectrum is associated with peri-
odic orbits in the corresponding classical problem [15,16].
Furthermore, if the corresponding classical problem is
nonintegrable and displays chaotic behavior, the shell
structure of the corresponding quantum spectrum is af-
fected depending on the degree of chaos [17,18]. Since
the deformed Woods-Saxon potential as well as the modi-
fied Nilsson potential are nonintegrable systems, a clas-

sical analysis of the single particle motion seems to be
indicated to shed light on the corresponding quantum me-
chanical problem. Results of such analysis are presented
in this paper. This is relevant for two reasons. Since the
Woods-Saxon potential and the Nilsson model are both
used with success in quantum mechanical models for clus-
ters, it is of interest to look at their similarities in the
classical context; in fact, their similarities are not obvi-
ous at first glance. Furthermore, since the two models
show chaotic behavior as is demonstrated below, it is es-
sential to understand whether at least the shortest periodic
orbits have similar features; otherwise, the corresponding
quantum problem is unlikely to agree with regard to shell
structures. In fact, it is the shortest orbits with smallest
period that make the most important contribution to shell
structure in the quantum spectrum [16].

We investigate the classical single particle motion for
the Hamiltonian function (we put the mass equal to unity)

+ &(ep. —Zpg)' (2)

In both cases there is cylindrical symmetry. We restrict
ourselves to zero value for the z component of the
angular momentum, that is, p~ = Pr sin 8 = 0; we
have left out the P dependence altogether. We have
chosen cylindrical coordinates g and z in the second case
while the choice r = Qg + z and 8 with tan 8 = g/z
is more appropriate in the first case.

We first consider qualitatively the case of spherical
symmetry which means o. = 0 in the first and co& = cu,

H = —,(p,'+ p'/")+ V s(, 8),

where we used the deformed Woods-Saxon poten-
tial Vws(r, 8) = Vp/(1 + exp{[r —R(8)]/d(8))) with
R = Rp[1 + uP2(cos8)] and d = dp[1 + (VR) /2R ]
[15], where P2 is the second order Legendre polynomial
and a a deformation parameter. As a second case we
consider the classical analog of the quantum mechanical
Nilsson Hamiltonian (neglecting the spin-orbit term)

(p2 + p2) + 1 (M2 g2 + ~2Z2)
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in the second case. Both cases reduce to 1 degree of
freedom since now pq = Or = zp&

—g p, is conserved.
Closed orbits occur if the radial and angular frequencies
are commensurate. Rewriting Eq. (2), for cui = cu, , as
0 = z(p„+pg/» ) + 2cu. » + Apa we obtain closed
orbits if Apts/cu, + 1/2 = n/m with integers n, m. For
instance, when n/m = 1/3, 1/4, . . . , the trajectory forms
essentially a triangle, a square, etc. in the g- plane;
for n/m = 2/5 we get the five star, and so forth. The
precise shapes of these geometrical figures depend on the
magnitude of A in that small values of A produce polygons
with rounded corners while larger values yield loops at
the corners as is illustrated in Fig. 1. The appropriate
scaling of A is given by the kinematical constraint between
the energy and the angular momentum which reads F. —
A pe ~ cu i pe i. Here we emphasize that for negative values
of A, as used in actual applications, the value of the angular
momentum pg is not limited in its absolute value for a
given energy. In particular, the relation implies that (for
A ( 0) if 4(Ai ) ~2/F. there is no restriction at all on pq.
For the Hamiltonian function of Eq. (1) an appropriate
choice of p~ can likewise lead to polygon orbits such as
a triangle, square, pentagon, but also a five star, and so
forth. The corners of the polygons are increasingly sharp
the smaller the value of the diffuseness dp (or the larger the
value of Rp). The angular momentum pa, and therefore the
number of corners of the polygons, is now limited by the
kinematical constraint pp ~ max„(2»2[E —Vws(», 0)]).
The plain circle (polygon of infinitely many corners) is
possible only for zero diffuseness where the maximum is
reached at r = Rp.

Thus a common feature of the two Hamiltonian func-
tions is, for the trivial spherical case, the existence of

closed orbits of simple geometric shapes. Such closed or-
bits have been observed by other authors for the Woods-
Saxon potential [6,12,13] but not, to the best of our
knowledge, for the Nilsson Hamiltonian under considera-
tion. As indicated above, there is, however, a crucial dif-
ference between the two: the phase space is noncompact
for the second case if A ~ 0. When deformation is in-

voked both problems become nonintegrable as p6 is no
longer conserved. The symmetrical periodic orbits dis-
cussed above are destroyed. The onset of chaotic motion
can be discerned; for small deformation this happens only
in parts of phase space.

For the Woods-Saxon potential we have chosen only
a quadrupole deformation of the boundary R. The de-
formation of the diffuseness is a consequence of volume
conservation [15]. Note that a pure quadrupole deforma-
tion of a cavity (dp = 0) yields an integrable case [19] for
the bound state problem. In our case, when a is turned

on, the effective deformation of Vws (», 8) implies higher
multipoles of order 22', l = 1, 2, 3, . . . , since Vws(», 8) can
be expanded in terms of even order Legendre polynomi-
als. The presence of higher multipoles is expected to lead
to chaotic behavior [20]. Results of our analysis confirm
this expectation. We have solved numerically the canoni-
cal equations of motion and obtained surfaces of section
in the plane g = 0; i.e. , the phase space diagrams dis-

played in Fig. 2 are in the --p- plane. Our results are
general; for demonstration we have chosen the parameters
Vp = 6 eU, dp =0.74 A, Rp = 15 A., and —3 eU for
the energy; this corresponds to the Fermi level of a clus-
ter with 300 particles [6]. Figure 2(a) represents sections
of three orbits; the initial values of the one in the center
have been chosen to display the separatrix that separates
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FIG. 1. Typical simple periodic orbits for the spherical Nils-
son model. The orbit with the loops at the corners is for
)Ai ~ cu /4F. while the other one is for )Ai = ~'/25F.

I IG. 2. Surfaces of section for the deformed %'oods-Saxon
potential for a = O. l (top) and n = O. l6 (bottom).
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a periodic orbit whose trajectory is displayed in Fig. 3(b),
and a vibrational mode in the center of the z-p, plane of
Fig. 2(a). For this particular value of u the motion is still
regular in most parts of the accessible phase space. An-
other periodic orbit with small stability islands exists at
z = ~17.2 and p, = 0; it is indicated by a pronounced
solid dot and its trajectory is displayed in Fig. 3(a). Only
this and the orbit associated with the outer part of the
separatrix can still be traced when 0, is increased from
0.1 to 0.16, but only the islands surrounding the latter
are still significant while the ones at the fringes of phase
space (z = 18.7) have virtually shrunk to zero; this is
illustrated in Fig. 2(b). The onset of chaos now occu-
pies larger parts of the phase space. The fast decay of
the stability islands for only a small range of u values is
remarkable. The center range in Fig. 2(b) is still asso-
ciated with quasiperiodic motion. There are many long
time periodic orbits which emerge from the center. The
shortest ones are indicated by crosses and their trajecto-
ries are illustrated in Figs. 3(c) and 3(d). The most stable
and shortest periodic orbit in Fig. 2(b) is associated with
the islands drawn; the trajectory remains that of Fig. 3(b).
Hard chaos takes over all of phase space when u is fur-
ther increased. The range of u values considered here is
in line with values used by other authors [7]. We mention
that omission of the 8 dependence of the diffuseness, i.e.,
putting d —= do, does not change the qualitative picture
of the surfaces of section; it does, however, drastically
change an individual chaotic orbit. All orbits displayed
in Fig. 3 emerge from the center of the surfaces of section
with increasing a. While they move outwards in the sec-
tion with increasing n their corresponding stability region
shrinks until it disappears.

For the Nilsson Hamilton function of Eq. (2) deforma-
tion is invoked by choosing coi ) cu, . The inequality is
associated with prolate deformation. In our context this
is the only case of importance since oblate deformation is
related to prolate by interchanging g and z. When A = 0

pz
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and cui ) co, the orbits are Lissajou figures; closed orbits
are obtained for commensurate coi and cu, . Our interest
is directed towards short periodic orbits for A 4 0 where
we actually focus on A ( 0 because of its physical rele-
vance. We have investigated the range of the parame-
ter b, defined by ~i = bee„in the interval 1.5 ~ b ~ 2.
Figure 4(a) displays the phase space structure at g = 0
where the surfaces of section are taken. Note that for
A ( 0, the whole region to the left and right, i.e., out-
side the lines z = ~pl/2[Bi, is accessible as long as the
two lines do not intersect with the ellipse which forms the
other part of accessible phase space; if ikey is sufficiently
large to allow intersection of the lines with the ellipse,
the phase space becomes connected; then the part of the
ellipse which is to the left and right of the lines is inac-
cessible. In Fig. 4(b) surfaces of sections for A = —0.01
are given for four different orbits. With the choice of en-

ergy E = 50 and the frequency cu, = n. /2 the two lines
are outside the ellipse. Recall that the same pattern is
obtained if E and A are rescaled such that EA = const.
With regard to periodic orbits there is a remarkable simi-
larity between Figs. 2(b) and 4(b). In fact, the short pe-
riodic orbits are of the same geometrical shape and oc-
cur in similar regions of the surfaces of section. Com-
pare in particular the rather stable orbit of Fig. 4(b) with
the corresponding orbit in Fig. 2(b); both have the same
trajectory [Fig. 3(b)] and their stability islands are situ-
ated in a chaotic region; further the orbits of Figs. 3(c)
and 3(d) in the center of the phase diagram which forms
the stable region of Figs. 2(b) and 4(b); and the orbit of
Fig. 3(a) which is situated on the fringes of phase space
within a tiny region of stability. The diagram of Fig. 4(b)
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FIG. 3. Typical short periodic orbits for the deformed Woods-
Saxon potential in the g-z plane. The same shapes occur in the
modified Nilsson model. (c), (d) Self-tracing orbits.

FIG. 4. Surfaces of section for the modified Nilsson model.
In (a) two situations of accessible phase space (shaded) are
displayed; left: ill ( cu,'/4E; right: ski ) cu2/4E Four orbits.
for a value of A which corresponds to the left of (a) are
displayed in (b).
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refers to b = 2, but the pattern as described prevails for
1.5 ( b ~ 2. For larger values of ~A~ hard chaos takes
over quickly within the ellipse, in particular, when the two
lines enter the ellipse. However, regular motion prevails
outside the ellipse which is the whole area to the left of
the left line and to the right of the right line. These orbits
may attain large values of [o and z, also the variation of
the angular momentum pq is unlimited in principle. In
this context we stress that the variation of pz ranges typ-
ically between —50 and +50 for generic orbits inside the
ellipse for our choice of parameters. This is significant
when considering a corresponding quantum mechanical
calculation.

To summarize, the deformed Woods-Saxon potential
and the modified Nilsson model are both used in quan-
tum mechanical models, more recently in application to
metallic clusters. Their classical analogs do not appear to
have much in common at first sight, yet we have estab-
lished important similarities between the two. While this
provides confidence in the quantum mechanical approach
where the two models are used for similar purposes, our
results also call for a certain caution. Both models are
potentially chaotic with the degree of chaos depending on
the deformation parameter in the Woods-Saxon potential
or on the parameter A in front of the I term present in

the Nilsson model. Within the context of nuclear physics
this behavior is probably of little significance, since only
the lower end of the spectrum is of interest. For metal-
lic clusters, however, with the much larger particle num-

bers, a higher range of the spectrum becomes relevant; in

this region chaotic behavior may well interfere with the
search for shell structure. Our results suggest that elec-
tronic shell structure is not expected to play a major role
for the stability and formation of metallic clusters if a sub-

stantial deformation prevails; however, in previous results,
where odd order multipoles were considered [18],the very
existence of shell structure was pointed out for prolate
deformation. Further investigations have to provide clar-

ity on this aspect. Finally we point out that, in view of
the large fiuctuations in time of the classical angular mo-

mentum pq, a too severe truncation in the corresponding

(stationary) quantum mechanical calculation could easily
invalidate results —in particular, it could conceal the on-
set of chaos in the quantum spectrum.
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