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Optical Second Harmonic Generation for Size Measurement of Small Spherical Clusters
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A new physical effect, the optical second harmonic generation in the combinational process involving
a capillary wave excitation, suggests a new diagnostics for the size distribution and temperature of
liquid spherical clusters or droplets smaller than the wavelength of light.
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How does one measure a size distribution of particles
smaller than the wavelength of light? This fundamental
problem arises in different fields of physics. Presently
it becomes important in particular for the remote con-
trol of cluster synthesis or for monitoring of cluster
vaporization [1],where detailed diagnostics such as elec-
tron microscopy or mass spectrometry are inapplicable
in situ and in real time, whereas the fast and remote opti-
cal method [2] of light extinction measures only the mean
square cluster radius [3]. In this paper we show that a
new physical effect allows us to combine the advantages
of optical methods with the high precision of mass spec-
trometry: One can resolve the size-sensitive capillary os-
cillation of spherical clusters spectroscopically by means
of a multiquantum Raman process.

The weak interaction between mechanical oscillations
of a neutral droplet and a light field does not allow one
to use the regular Raman process, since in this case one
has to detect a weak combinational signal on the top of
the wings of the strong line of Rayleigh scattering. The
situation becomes completely different when we employ
the two-photon Raman process shown in Fig. l. Indeed,
the regular Rayleigh scattering at the pumping frequency
to can be easily separated from the scattered signal near
the frequency of 2to. Moreover, the central symmetry
of the droplet does not allow the two-photon Rayleigh
process, that is, the scattering at exact double frequency
[4]. Qnly the excitation of the asynunetric oscillation
of the droplet shown in Fig. 2 results in a signal at a
frequency close to the double frequency of pumping. This
oscillation manifests itself in optical spectra via shifts of
the frequencies by the analogy to the regular Stokes and
anti-Stokes processes.

For droplets of isotropic media the second order nonlin-
earity ~1 comes from the surface [5). In this paper we
therefore concentrate on oscillations of the droplets' sur-
face, that is, capillary waves. %e find the eigenfrequen-
cies of the surface modes, perform quantization of this
motion, and find the amplitudes of zero vibrations. In the
next step we calculate the coupling between the capillary
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FIG. 1. Parametric excitation of capillary waves in the com-
binational process of "second harmonic" generation.

vibrations and the light field and, finally, evaluate the size
of the effect.

We assume that each cluster is a droplet of liquid with
density p, size R, and surface tension coefficient o.. We
describe the hydrodynamics of the droplet by the velocity
potential 4 defined as v = V4. The equation of motion
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FIG. 2. Generation of the second harmonic at the surface of
a droplet. Asymmetric capillary mode l = 3,I = 0 is active
in the parametric second harmonic generation process. For
this mode the total area of the droplet surface normal to the
pumping field at the left hand side of the droplet exceeds
that from the right hand side. Therefore the overall second
harmonic signal generated in phase with the excitation of
asymmetric surface oscillation does not vanish.
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in terms of Bessel functions Jl ig(x) and spherical
harmonics I'l (8, p). Here c„l„arethe amplitudes of the
modes, and the mode frequencies B„(have to be defined
with the help of the boundary conditions
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discussed in detail in Ref. [6]. Indeed, when we substi-
tute Eq. (2) into Eq. (3) and make use of the relations
for Bessel functions xJ, l(x) + xJ„+l(x)= 2vJ, (x) and

d'J„l(x) —J,+l(x) = 2d„J„(x),we arrive at

pO„(R
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for the potential reads

V'C + —4 =0,1-
g
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where s is the velocity of sound. We write the solution of
this equation in spherical coordinates

—&/z4 = g c. „Ir Jl+in r)
n, l,m

X y, (8, y)e'

We now quantize the surface mode. We employ the
expression [6]
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for the potential energy of the surface, substitute here the
deviation s' from Eq. (7), and find the potential energy
corresponding to the maximum deviation,

g [2 + l(I + 1)]b, „,
We now note that the product lrR2[2 + I(I ~ 1)] plays
the role of rigidity ~& for the oscillator of mode t, I and
hence via the relation (bl )0 = v/hAl/al„, it yields the
relative amplitude

(bl.m)0
—= Pl = Fi0(

R2[2 + l(l + 1)]

of zero vibrations of these modes.
Now we calculate the coupling between the droplet.

oscillations and the electromagnetic field. We assume
that the main contribution to the interaction between the

pumping field E and its second harmonic E2„gq comes
from the tensor component of the nonlinear susceptibility
y„„'„normal to the droplet surface. Hence the interaction
Hamiltonian reads

H;„,= gl )R (E„nri) (E~ rinii) sin 8 d8 dp, (11)which implicitly determines the frequencies 0„(.
We find the deviation g(8, q) of the droplet surface

from the equilibrium spherical position via the relation

g = v„i„=&———
„„

i,=&4, which yields
where nri =—nri (8, p, t) is the unit vector normal to the
surface oscillating at frequency Q. For a small per-
turbation of surface g (( R we find the components

(nR, nil, n„)=—(1, —,&, „„&~„)of n in the spherical coor-
dinates. Substitution of this expression and Eq. (7) into

Eq. (11) and integration over the angles p and 8 results
ln

en, l,m;ri, r
r) Jl+ I/2 (An l«/s).
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where S„andX'2 ~ are amplitudes of the field vectors
E„andE2„gdirected at the angle o. with respect to each
other, and the function f is given by the expressionAo l:Al = I(/ —1)(l + 2).

pR3
(6)

(5)
We can considerably simplify Eqs. (4) and (5) assum-

ing A„(Rs ' && 1, which is the case for large clusters.
Then only the lowest in n set of frequencies Ao i is impor-
tant for the capillary waves and hence Eq. (4) reads [6]

We find the deviation g for this case by replacing Bessel
functions Jl+ i/2(Al rs ') by (Al/2s)'+'/ r'/I (I + 3/2)
which yields

fl (n) = cos 8 sin 8 d8 dp

~ Y(,m
X cos 0 sin o. cos cp

g = /bi Yl (8, rp)Re'
l,m

where bl = col l(Al/2s)'+' 2R' 2/AlI'(1 + 3/2) is the
relative amplitude of the mode (I, m).

+ [sin a sin p (cos 8 —2 sin 8)
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Note that the direct product of three vectors E„,E,
and E2 g is a tensor of the third rank. Hence the
only nonvanishing contribution to the factor f(a) in the
interaction Hamiltonian Eq. (12) comes from the spherical
harmonic Y3, which also represents a spherical tensor of
the third rank. We therefore concentrate on the modes
with l = 3 and find

face mode operators (bl bl ) = n, h + 1 and (bl bl ) =
nth in terms of the thermal number of quanta n, h

=
(e" l~ —1) ' we find the probabilities As of the Stokes
and A, ~ of the anti-Stokes processes,

4 2ttl
As =
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while all other elements vanish.
Now we quantize the inter'action Hamiltonian Eq. (12)

assuming the pumping field 2 to be classical and take
only the terms corresponding to creation of the second
harmonic photons. We take into account both positive
and negative shifts in frequencies, that is, both Stokes and
anti-Stokes processes, and arrive at

H;„,=g@R 'E p3g f3 (u)

(o) - t (o) - t "tx (E2m+na2„+nbnm + E2m na2m nbn ).

(14)

Here b~ and bg are the creation and the annihilation
operators for the capillary mode l = 3 of frequency 0 =
03 = $30o./pR3, and Zz„n are the vacuum electric
field amplitudes at the frequencies 2' ~ 0 corresponding
to creation operators a2„~of anti-Stokes and Stokes
photons. One can see that the interaction Hamiltonian
Eq. (14) has the structure

(o) t (o) - t
Hint = Ds$2ta na2ta n + DasE2 +Qataz +nt,a(15)

and hence the operators Dg, g play the role of dipole
moment operators of clusters. We get the emission rate
of Stokes and anti-Stokes photons substituting the moduli
squared of these operators averaged over the quantum
state of the clusters

(Ds Ds) (/Y R Eta p3) / f3 (a)m(blmblm) i, ,

(DaSDaS) = (g R XmP3) g f3m(a) (bl mblm) (16)
m

to the expression A = 4(2')3D2/3hc3 for the Einstein co-
efficient. When we express average products of the sur-

which are the final results of our analysis.
Let us now evaluate the size of the effect. For a typical

metal we estimate g ) —5 X 10 ' esu, p —5 gicm,
and tT —200 dyn/cm. Hence for a particle of radius
R = 10 6 cm we find from Eq. (6) the typical fre-

quency of capillary oscillations 03 —4 X 10' s

from Eq. (10) the relative amplitude of zero oscillations

p3 —1.5 x 10 4, and the number of thermal quanta

n, h
—10 . For a pulse Nd-YAG laser of wavelength

A —10 4 cm with pulse energy W —20 mJ and pulse
duration r —10 s focused to the area of 0.1 mm

we find X2 —8 x 106 esu. For the collinear geome-
try with a = 0 the factor f30 is of the order of 50.
Substitution of these numbers into Eq. (17) yields
ASA, S

= 102 photons/(s cluster). If the concentration of
the droplets is such that we have 1 particle per volume
of A, the overall emission rate from the focal volume
0.3 x 0.3 x 1 mm is about 10" photons/s, that is,
103 photons/pulse. Thjs number of photons is sufficient
for spectroscopic measurements via photon counting.

We note that since p2 scales as II/R2 and n, h scales
as kT/0 the overall intensity of the second hartnonic
signal is proportional to R T, that is, to the cluster
temperature and the area of its surface. We also note that
the frequency of the capillary oscillations 0 scales like
R ~, that is, inversely proportional to the square root
of the number N of atoms in the cluster. Therefore the
spectroscopic method allows us to resolve the individual
masses of the clusters if BQ/0 —1/(2N). For the pulse
laser BQ —r ' and 0 is given by Eq. (6). For the
atomic weight of 20 proton masses we substitute the
relation 4npR3/3 = 20m. „N into Eq. (6) and find
the maximum number of atoms in cluster N,„-3 X 10
for which the individual N still can be resolved via gen-
eration of the second harmonic from the pulsed Nd-YAG
laser.

As one of the possible applications of the discussed
effect let us consider the diagnostics of size distribu-
tion in a CO2-laser-driven synthesis of Si clusters [7),
where the concentration of nanometric liquid clusters is
typically of the order of 10' —10' cm . The experi-
mental setup sketched in Fig. 3 includes a pulsed dye (or
Nd-YAG) laser focused in the reaction zone and a record-
ing scheme for the second harmonic radiation genera-
ted there. A gated photon-counting system detects the
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FIG. 3. The experimental setup for diagnostics of the size
distribution of clusters in a laser-driven reaction by means of
second harmonic generation excitation of capillary oscillations.
It includes the following: (1) pulsed dye (or Nd-YAG) laser;
(2) reactor; (3) high-resolution spectrum analyzer; (4) gated
photon-counting system.
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