VOLUME 73, NUMBER 1

PHYSICAL REVIEW LETTERS

4 JuLy 1994

Efficient Linear Scaling Algorithm for Tight-Binding Molecular Dynamics

S. Goedecker
Cornell Theory Center, Ithaca, New York 14853-3801

L. Colombo
Dipartimento di Fisica, Universita di Milano, via Celoria 16, 1-20113 Milano, Italy
(Received 2 March 1994)

A novel formulation for tight-binding total energy calculations and tight-binding molecular dynamics,
which scales linearly with the size of the system, is presented. The linear complexity allows us to treat
systems of very large size and the algorithm is already faster than the best implementation of classical

diagonalization for systems of 64 atoms.

In addition, it is naturally parallelizable and it permits us

therefore to perform molecular dynamics simulations of systems of unprecedented size. Finite electronic
temperatures can also be taken into account. We illustrate this method by investigating structural and
dynamical properties of solid and liquid carbon at different densities.

PACS numbers: 71.45.Nt

The tight-binding method [1] (TBM) is one of the most
widely used electronic structure methods. The method
and its variants such as the extended Hiickel method
[2] have been applied to a wide range of systems rang-
ing from transition metals to covalent materials. When
a suitable repulsive potential is added in the total en-
ergy expression, TBM can also be used for tight-binding
molecular dynamics (TBMD) simulations [3-6]. Even
though the TBM is not as accurate as ab initio den-
sity functional and Car-Parrinello molecular dynamics
simulations [7] (CPMD) calculations it is a useful tool
since the computational effort is significantly reduced in
comparison with ab initio methods and it is therefore
possible to treat bigger systems or to follow the evolution
of the system over more time steps in a molecular dynam-
ics simulation. Consequently, a large class of problems
relevant to condensed matter physics which fall out of
reach of CPMD can be studied by means of TBMD. In
spite of this, the application of TBMD to very large sys-
tems (hundreds or thousands of atoms) was hindered be-
cause the conventional formulation of TBMD had a cubic
scaling with respect to the number of atoms N, in the
system and because there were no algorithms which could
take advantage of the powerful parallel computers. De-
pending on whether standard diagonalization techniques
(SDT) or Car-Parrinello type fictitious Lagrangian dynam-
ics are used, the cubic term arises from either the ma-
trix diagonalization or the orthogonalization of the wave
functions. ‘This problem of the cubic scaling has been
recognized by the computational physics community and
several proposals have recently been put forward to over-
come this bottleneck. They are based either on the con-
cept of localized orbitals [8] or on the calculation of the
density matrix [9].

In this paper we present a novel formulation of TB
based methods, in which the computational workload
scales linearly with N,;. In contrast to other approaches it
is based on a projection step rather than on minimization.

The projection approach requires much less interproces-
sor communication when it is implemented on a parallel
machine than the current minimization approaches [10].
Furthermore, it is free of numerically cumbersome lo-
cal minima which are found in restricted minimization
schemes. Our resulting computational framework is ex-
tremely efficient and can be applied to both TB total en-
ergy calculations and TBMD simulations of systems with
unprecedented size.

Within the TBMD scheme the total energy E,x of a
given system is expressed as [3—6]
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where €; are the single-particle energies obtained from
the TB Hamiltonian H, f((e; — u)/kT) is the Fermi-
Dirac distribution function, and Uy, is a suitable effective
potential. During a conventional TBMD simulation most
of the computational work is spent in calculating the
eigenvalues {¢;} and the eigenvectors {¥;} of H. They
respectively enter in the band structure term
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and in the Hellman-Feynman (HF) force term which is the
derivative of Eys with respect to atomic displacements r,
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these two quantities can be expressed as
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where ¢, is the /th TB basis set function (Lowdin orbital)
centered on the ath atom site. The above expressions
for Eys and f, follow readily from the fact that the
trace is invariant under the unitary transformation from
the W¥; representation to the ¢;, representation, and
that the Fermi matrix is diagonal in the basis set of
the eigenfunctions ¥;. The evaluation of the traces is
trivial and scales linearly with N,,. It remains now to
be shown how the above defined Fermi matrix and the
matrix products in Egs. (5) and (6) can be calculated in a
numerically efficient way.

The Fermi distribution can be approximated in the
interval spanned by the lowest €pn;, and highest €pax
eigenvalue of H by a polynomial pr(x) of degree ny.
Once this polynomial is known, each column of the Fermi
matrix is calculated by applying the matrix polynomial
pr(H) to ¢i,. This operation requires a computer time
proportional to np X Ny Since the dimension of the
Fermi matrix is proportional to N,, the method as outlined
above implies a computational effort proportional to
npiN2, ie., an O(N2) scaling with respect to the number
of atoms.

However, in insulators and disordered metallic liquids
an O(N,,) scheme can be obtained if one takes advantage
of the fact that the elements of a column F|¢;,) of the
Fermi matrix [hereafter referred to as a localized orbital
(LO)] decay exponentially as shown in Fig. 1. To get
a linear scheme, one simply zeros each column element
of LOs corresponding to those atoms falling outside a
sufficiently large sphere centered at the a atom. We
name this sphere the localization volume. The localized
orbitals are not to be confused neither with TB basis
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FIG. 1. The decay of a localized orbital (@~ |F| @i=25a)
versus the distance |r, — rg| for fixed . Full circles denote
the high-density crystalline phase, empty circles the low-density
liquid phase.

functions nor with eigenfunctions ¥;. By making use
of the cutoff LOs, all the matrix-vector multiplications
needed to compute the Fermi matrix and Egs. (5) and
(6) have to be performed only in the localization volume
which is much smaller than the volume of the simulation
cell for large systems.

Ordered metals can in principle also be treated with a
linear scaling if a nonzero electronic temperature is used.
In this case the off-diagonal elements of the density matrix
again decay exponentially whereas they decay only alge-
braically at zero electronic temperature. However, unless
one uses very high electronic temperatures the exponen-
tial decay is very slow compared to most insulators and
the localization volume will be equal to the volume of the
system even for rather large systems. One would there-
fore observe a quadratic scaling unless one treats gigantic
systems, where one would again have linear scaling. Pre-
liminary tests for this kind of metallic systems indicate
that our method is faster than standard diagonalization for
systems containing several hundred atoms.

The degree of np; of the polynomial is of the order of
npl = (€max — €min)/kT. The method therefore becomes
slower and slower as one goes to lower temperatures.
In most applications, however, the relevant physical
properties are only slightly affected by the electronic
temperature and one can therefore choose an electronic
temperature which is higher than the physical one in order
to further improve the numerical efficiency. In the case
of an insulator, it is not necessary to reproduce the Fermi
distribution in the region of the band gap and one can find
a polynomial of degree np; = (€max — €min)/€gap, Where
€gap 15 the energy gap, which gives good accuracy in the
valence band region even at very low temperatures.

We have applied our method to solid and liquid
carbon in the high (p = 4.4 g/cm?® and low density
(p = 2.0 g/cm?) phases. Carbon is a system of interest
in many fields of science and its phase diagram is still
a matter of discussion. Moreover, there are CPMD
simulations [11, 12] to compare with in order to establish
the reliability of the present computational framework.
The two-center TB hopping integrals required in Egs. (5)
and (6) have been determined on a minimal basis set
consisting of four sp? orbitals for each atom [13] and
scaled upon interatomic distance according to Harrison’s
rule [1]. The repulsive potential U, [see Eq. (1)] has
been fitted onto the cohesive energy curves of carbon in
diamond and graphite structures and for the linear chain.
Further details will be published in a following paper.

The large band gap (=8 eV) of diamond allows us to
use a polynomial of rather low degree (n,; =~ 50) and pro-
duces LOs which decay very rapidly (see Fig. 1). We
cut off the localized orbitals at a radius of =11 a.u.
With this choice of parameters, the evaluation of Ey,
was correct to within less than 1 meV/atom when com-
pared to a calculation using standard diagonalization tech-
nique (SDT). In a microcanonical simulation of 1000-atom
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FIG. 2. CPU time on an IBM RS6000/550 workstation to
calculate E,s and HF forces with the present method for cells
containing carbon atoms.

crystal diamond the total energy was conserved to within
10~ eV/atom at a temperature of 300 K. In order to prove
the high numerical efficiency of our method, we report
in Figs. 2 and 3 the timing results for one time step of
a TBMD run. In Fig. 2 we show that as soon as the vol-
ume of the simulation cell gets larger than the localization
volume of LOs (N, = 64) a nearly linear behavior is ob-
served. As a matter of fact, the method is faster than SDT
even in the case of small 64-atom systems. The corre-
sponding timings with SDT (LAPACK library) are 5.4 s
for 64 atoms, 164 s for 216 atoms, 54 min for 512 atoms,
and 253 min for 1000 atoms. In the case of a 1000-atom
system, we reduced the execution time from more than 4 h
to less than 4 min. In addition, the memory requirements
are also drastically reduced: In our implementation, the
calculation of a 1000-atom system requires only 5 MByte
of memory. Since each localized orbital can be calcu-
lated independently from the others, our method is triv-
ial to parallelize. The timings are shown in Fig. 3. The
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FIG. 3. Execution speed as a function of the number of

processors on an IBM SP1. The system considered is a 1000-
carbon atom cell.

124

4 JuLy 1994

3 T T T T T T T T T T T T T
2.50

[ =4

8

B 2

c

2

c

S 1.50

5

g

<]

3]

‘® .50

Q

distance (a.u.)

FIG. 4. Particle-particle correlation function g(r) for solid
high-density carbon at 6500 K. The dashed lines represent the
CPMD results of Ref. [7].

computational speed on 25 IBM SP1 processors was over
1 gigaflop. One TBMD time step on 1000 atoms takes
now roughly 10 s on the parallel computer with our O(N,,)
algorithm.

The simulations for carbon were carried out with a
periodically repeated cubic cell containing 512 atoms.
We used a time step as small as 0.5 X 10™5 s and
the sampling was done during 2000 time steps after
4000 time steps of equilibration. In Fig. 4 we report the
particle-particle correlation function g(r) as calculated at
6500 K for the high-density phase. Well defined peaks
corresponding to the shells of neighboring atoms can
be observed up to a distance of ~12 a.u. The system
does not display any tendency to melt as confirmed by
the atomic mean square displacement. The excellent
agreement with short range CPMD data [11] (dashed
line) confirms the reliability of the present calculation. In
Fig. 5 we show the g(r) for low-density liquid carbon at
5000 K. It is clearly seen that the crystal structure has
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FIG. 5. Particle-particle correlation function g(r) for liquid

low-density carbon at 5000 K. The dashed line represents the
CPMD results of Ref. [7].
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been completely lost, apart from the short-range features
which, again, are in rather good agreement with first-
principles data (dashed line) [12]. Moreover, the liquid
structure has been found to be dominated by twofold
and threefold coordinated atoms, as in Ref. [12]. The
diffusive behavior results in a self-diffusion coefficient
of 3.5 % 107* as compared with 2.4 X 107* cm?s™!
from the CPMD simulation [12]. When we applied our
method to small cells, which are still accessible to SDT,
the results were always quasi-indistinguishable from the
results obtained by SDT.

In conclusion, we have presented a new linear scaling
method for tight-binding molecular dynamics. We have
proved that the method is extremely efficient and easy to
parallelize. We have presented practical applications to
carbon in different phases and at different densities.
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