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Ultraviolet-Renormalon Calculus
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We consider the status of the so-called ultraviolet (UV) renormalon which contributes to large order
divergences of perturbative expansions in quantum chromodynamics. We argue that although the
renormalon is associated with short distance dynamics, the class of renormalon graphs is not well
defined and its overall weight is not controlled by theory. From this point of view there is not much
difference from the case of Borel nonsummable singularities. Phenomenologically the UV renormalon
is related to an effective four-fermion interaction originating within fundamental QCD.

where E, y, and S are constants. Because of divergences
(1) there arise problems both of fundamental nature,
regarding the status of perturbative expansions, and of
practical importance, whether the divergences can be
associated with new physical phenomena (for recent
related discussion see, e.g., [3—5]).

Although the behavior (1) is of very general nature it is
useful to have a particular process in mind. For the sake
of definiteness we concentrate on the correlation function
of two electromagnetic currents j„

II = i dxe' 0 T J x J 0 0

= (q e. —
V .e')II(Q'). Q' = —q'. (2)

The quantity Q2dII (Q2) /dQ2 is represented as an expan-
sion in the QCD coupling constant a, (Q2):

,dII (Q')
Q = (parton model) X g a„u," (Q ), (3)

n=0

and the asymptotic of a„ is governed by Eq. (1).
What makes the picture even more complicated is that

there exist different sources of the factorial growth of
a„. First, for pure combinatorial reasons the number
of Feynman graphs grows with n In this ca. se S/a. is
the classical action associated with the instanton solution

PACS numbers: 11.10.6h, 11.15.Bt, 12.38.Bx

Large-order behavior of perturbative expansions has
been studied for more than forty years starting from the
seminal paper by Dyson [1] (for a review and collection
of papers see Ref. [2]). The problem is that no matter
how small the coupling constant u is, the expansion
coefficients a„grow in large orders of perturbation theory
so fast that they invalidate the use of the perturbative
expansion. Generically,

g—+00 n!
- Kn~ —,

S

and [6]

(S)instantons = 4~ ~ (4)

The absolute value of S is the smallest for the ultraviolet
renormalon

(S)Uv tnnottn
= 1/bp i (S)rR renorm

= 2/bp, (6)

which means that the UV renormalon dominates at
large n.

Note that, depending on sign of S, the series (3) is ei-
ther sign alternating or not. This is an important point
since sign oscillating series can be summed up a la Borel.
Therefore only Borel nonsummable contributions are con-
sidered a real problem. The price of the nonsummability
is introduction of unknown parameters. In case of the
leading IR renormalon (6)—the first nonsummable sin-
gularity in QCD —this is the so-called gluon condensate
[11], [10], or the matrix element (Oiu, (G„'„)2i0) where

G„ is the gluon field strength tensor. The correspond-
ing uncertainty in II(Q~) is of order

Oa, G „0
(BII (Q ))ia „„, —const X . (7)

In fact, the phenomenology of the Q
4 terms is well

developed [11]. The sound basis for this phenomenology

Second, there exists special graphs (see Fig. 1) which
receive anomalously large contribution either from very
low or very large virtual momenta. These are called
renormalons, infrared or ultraviolet, respectively [7—10].
Then constant S in Eq. (3) is related to the first coefficient
bp of the P function:

2 d
Q) = bp (Q) ——bi, (Q)+ . (5
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is that the gluon condensate is numerically large and at
moderate Q the Q

" term is not screened by lower order
perturbative corrections.

In this Letter we address the ultraviolet renormalon.
The status of this singularity in QCD is somewhat
uncertain. On one hand, as mentioned above, numerically
it should dominate at least at very large n. On the other
hand, it is Borel summable and is usually disregarded
for this reason. The Borel summation would turn the

divergent branch of the perturbative series into a leading
powerlike correction [12]:

(~ II (Q ))Uv -.o
const

(8)

However, since the UV renormalon is associated with
short distance dynamics which is well understood in QCD
one is inclined to assume that the UV renormalon should
be treated explicitly rather than phenomenologically.

We reexamine the status of the ultraviolet renormalon.
Our findings can be summarized in the following way.
The class of graphs contributing to asymptotic (1) with
S = —1/bo is in fact ill defined. Thus the constant K in

Eq. (8) presently cannot be determined even in principle
[13]. From this point of view the difference between the
Borel summable and Borel nonsummable cases might be
rather a matter of wording. Moreover, one can argue
that the UV renormalon contribution is related to matrix
elements of effective four fermion interaction stemming
from short distances. This observation suggests a bridge
between fundamental QCD and the Nambu —Jona-Lasinio
[14] kind of low-energy phenomenology.

Technically, we are mostly interested in developing
means to evaluate the renormalontype graphs via the
operator product expansion (OPE), which utilizes the
observation that the UV renormalon is associated with
virtual momenta k » Q. The idea of this OPE goes back
to the paper by Parisi [9]. We will demonstrate that this

OPE is indeed a practical and relatively simple way to
perform calculations. The details of the calculations are

given elsewhere [15].
Proceeding to the outline of the derivation, we consider

a simplified model with U(1) gluonic field B~ and N&

fermionic fields with electric charges Qq so that the

Lagrangian is

L = —
4 B„„B~'+ P qy"i B„q + gB"j „' + eA "j„,

(9)
where g and e are the strong and electromagnetic cou-
plings, respectively, and j„, j„are the gluonic and elec-
tromagnetic currents

The simplest renormalon-type graphs are depicted in
I"ig. 1 and we will explain the basic features of the
technique on this example. The sum of these graphs can
be cast into the form:

d k g-(k-)
11~, (cjf) e(~])et~) ==

4 ~
('v ~T( f i. ( ) 1)'

(2qr)'

where we have made the Euclidean rotation in the inte-

gration over a gluon momentum k„and introduced polar-
ization vectors e, ~. , of initial and final virtual photons.
The running coupling g'-(k-') sums up vacuum bubble
insertions:

J-

g-' {k'-) = 4' ~) (g'-) g [—bon1 (g-')1" ln" (I-'ig')
it =0

g'- (Q-) 1 + b„ ln
4m. g'- j

with bo = Nfi3rr —The m.atrix element (y" ~(T~ ) ") rep-
resents the forward amplitude of gluon-photon scattering
and the operator T is

dx e"'T j„' (x). j '" (0)

By assumption —to be checked a posteriori —the mo-

mentum k flowing through the gluon line is much larger
than the external momentum Q. Then it is logical to start

by expanding in inverse powers of k and to consider OPE
for the T product of two gluonic currents j,]„

dxe''T j„'(x)j"'(0) = ge; (k) 0; (0), (14)

where 0, are local operators. Here we quote (for details
see [15])results for the OPE in the tree approximation:

(ea'F„, ggqqr"e + gD'&„„ger"e
q j

+ g(k-"). i(5)

where I „,is the photonic field strength tensor. Note that

the expansion starts from operators of dimension six.

i,k

~
&

Jp = +97pq Jp = &QqqYpq. (10)

We assume furthermore that QQq = 0 to ensure that
there is no mixing between A„and B„due to fermionic
loops.
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FIG. 1. Building up the simplest renormalon-type graph.
Dashed line denotes gluon while solid lines refer to fermions.
One starts with an exchange of a vector particle of momentum
)t- and inserts vacuum polarization bubbles» times.
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The matrix element of 8"F,„is trivial:

«lea"F vl y*) = e q e„' q&(q ' e ') (17)

while (y*lj~l0) is given by the well-known one-loop
graph and equals to

(18)
where (Q2) is the averaged square of electric charges.
Note that the integral over the fermionic loop has been
evaluated with logarithmic accuracy. The upper limit of
integration, p —k, is implied by our OPE construction
while the lower bound, p2 —Q2, arises from account for
the external momentum Q in the integrand.

Substituting the result (16) for (y*lTly*) into (11) we
come to

We are interested in the expansion of II(Q2) in aI(Q2)
and resort therefore to Eq. (12). As a result there arise
integrals of the type

2 dk2 k2
Q In" = n!, (20)

&2 ~2 k4 Q2

which are saturated by

(k'),If —Q'e" . (21)

Since at large n k2 » Q2, our use of OPE is justified.
Combining all the factors we arrive at

a„" = — (—bp)" n! .
77 p

(22)

This result coincides with explicit calculations of the
renormalon graph of Ref. [16]. It is worth emphasizing
that the advantage of the operator product expansion is not
only the compactness of the calculation but also explicit
gauge invariance so that the generalization to the QCD
case is straightforward and reduces to a change in bp.
Indeed, since the operator product expansion is based on
a set of gauge invariant operators the only dependence on
ln k2/Q2 arises through the use of Eq. (12) (or its two-
loop generalization) and we even do not need even to
specify the gauge fixing or the class of graphs involved
explicitly. This technical point is especially important in
the case of non-Abelian gauge theories.

The next step is to evaluate the matrix element
(y*lTiy*). The part of T containing D"G„„contributes
in fact only at the three-loop level and will be considered
later. As for the part of T containing 8 F,„ it immedi-
ately factorizes into

(y* ITI y*) = — 4((y* le&"F.„l0)&0 1
j"

I
y*)

+ (y*
Ij~l 0) « le& "F.„l y*)). (16)

+" +h~, (k)+".I 2 (25)

FIG. 2. Three-loop skeleton graphs giving rise to four-
fermionic operators. Momentum k flowing through the gluonic
lines is considered to be large so that the operator product ex-
pansion is an expansion in inverse powers of k . The dotted
boxes mark subgraphs producing four-fermionic operators.
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The OPE can also be applied to three-loop skeleton
graphs, whose examples are shown in Fig. 2. One we
insert vacuum bubbles into gluon lines, we get graphs
with two renormalon chains and generate effective four-
fermion operators. Indeed, if the large momentum k

flows through gluon lines then it is quite clear that the

graphs in Fig. 2 can be considered as matrix elements of
effective four-fermion operators.

Four-fermion operators arise also through use of equa-
tions of motion for the operators D"G,„generated by
two-loop graphs above. The sum of the two contribu-
tions is

2 ( ) 3 2 f
gqr, v q (23)

Further procedure is similar to what has been done above.
Namely, we have to find the matrix elements of the
four-fermion operators over virtual photons, substitute the
coupling g (k ) by the expansion in g2(Q2) and integrate
over k . Then the naive expectation would be that we lose
a factor of n compared to the simplest renormalon graph
considered above. Indeed, since we have two renormalon
chains now we are losing at least one power of log in

integrals of the type (20) which in turn implies loss of a
factor n. The actual result differs drastically from these
expectations. Namely at large n the three-loop skeleton
graphs win over the two-loop ones [17]:

a„-= — (—bo)" (n + 1)!
727r2b2

(no anomalous dimension) . (24)

This dominance of the more complicated graphs at large
n is due to a combination of two factors.

First, the matrix element of four-fermion operators
contains an extra log compared to (18). This is easy to
understand since now we have essentially the same matrix
element (18) squared. Since each log in integrals of the

type (20) is converted into a factor of n it is clear that we
are getting an extra n. This effect is not too surprising.
The other reason for the failure of the naive expectations
is more profound. Let us concentrate on the expansion
for the coefficient functions c; in Eq. (15):

c; (k ) = hp + hiui (k ) + h2a, (k )
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Usually one assumes that c;(k) can be approximated by,
say, the first term since nz(k2) is small. This logic does
not work, however, and it is a matter of simple algebra to
convince oneself that for any finite I the contribution of h&

to the asymptotic of a„has the same large n dependence.
This means, in turn, that all the terms in the expansion
(25) are equally important.

Technically this happens because there are two large
parameters, n and ln(k /Q ), and only the logs are
controlled by renormalization group. However, as a result
of integration over k2, powers of logs are converted into
powers of n [see, e.g. , Eq. (20)]. It turns out that lower
powers of logs have larger statistical weight. As a result,
the two large parameters, large combinatorial n and large
log, get mixed up and the resulting contributions of all

terms in the expansion (25) are of the same order. It
is not ruled out, in particular, that the contributions of
various hz in Eq. (25) cancel between themselves and the
true asymptotic is very different from (I).

It is worth emphasizing that this observation is specific
to the ultraviolet renormalon and does not apply to the
infrared renormalon (which is not summable, however,
to start with). Since renormalons are re]lections of the

Landau poles in perturbative expansions (see, e.g. , [2])
it means that the Landau pole in the ultraviolet does not
necessarily manifest itself in II(Qz).

To summarize, we have demonstrated that renormalon-

type graphs can be evaluated by means of the operator
product expansion. The construction is explicitly gauge
invariant, which is especially important in case of non-

Abelian gauge theories. The technique reveals, however,
that the class of graphs producing one and the same

asymptotic is not well defined and the size of possible

Q
z terms is uncertain theoretically for this reason.

Moreover, properties of the sum could be very different
from properties of individual terms. Assuming that this

does not happen we conclude that the UV renormalon is
related to effective four-fermionic interactions.
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