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Nontopological Magnetic Monopoles and New Magnetically Charged Black Holes
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The existence of nonsingular classical magnetic monopole solutions is usually understood in terms
of topologically nontrivial Higgs field configurations. We show that finite energy magnetic monopole
solutions also exist within a class of purely Abelian gauge theories containing charged vector mesons,
even though the possibility of nontrivial topology does not even arise provided that certain relationships
among the parameters of the theory are satisfied. These solutions are singular if these relationships do
not hold, but even then become meaningful once the theory is coupled to gravity, for they then give rise
to an interesting new class of magnetically charged black holes with hair.

PACS numbers: 14.80.Hv, 04.70.Dy, 11.15.Kc

It was shown by 't Hooft and Polyakov [1] that clas-
sical finite energy magnetic monopole solutions occur in
certain spontaneously broken non-Abelian gauge theories.
The existence of these solutions is often understood in
terms of topologically nontrivial Higgs field configura-
tions. In this Letter we show that finite energy mag-
netic monopoles can also be obtained in a class of purely
Abelian theories in which such topological considera-
tions do not even arise, provided that certain relationships
among the parameters of the theory are satisfied. These
solutions are singular if these relationships do not hold,
but even then become meaningful once the theory is cou-
pled to gravity, for they then give rise to a new class of
magnetically charged black holes with her.

To illustrate these ideas, we consider a theory with
electromagnetism coupled to a charged vector field W„
and a neutral scalar field P. The spin-1 W particles
have electric charge e and a magnetic moment gd„v =—

r'eg(W„*W„—W„*W„)with g assumed to be positive [2].
They have a P-dependent mass m(P) that takes on a
nonzero value mq = m(v) when the scalar field takes on
its vacuum value v but vanishes at some other value of ~t,
which we arbitrarily choose to be P = 0. Adding a quartic
W self-coupling proportional to d2 „(otherinteractions are
also possible), we obtain the Lagrangian
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where F„v= B„A,—B„A„is the electromagnetic field
strength and D„W„=(8„—reA„)W„is the U(1) covari-
ant derivative. If g = 2, A = 1, and m(P) = e@, this is
in fact the unitary gauge form of the Lagrangian for an
SU(2) gauge theory spontaneously broken to U(l) by a
triplet Higgs field. Similarly, for g = 2, A = (sin8ri) 2,

and m(P) = eP/2 we have the unitary gauge form of the
standard electroweak theory, but with all terms involving
the Z or fermions omitted. However, for generic values

of g and A an extension to a non-Abelian symmetry is not
possible [3].

It is useful to display the energy density corresponding
to this Lagrangian. For static configurations with Ap =
Wp = 0, this may be written as
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In any magnetically charged configuration, the magnetic
field will be at least as singular as 1/r' at the position
of the magnetic charge. We will show below that in
certain situations W; can be chosen so as to cancel the
singularity in the second term on the right hand side of
this equation. Having done this, we are still left with a
I/r singularity from the first term. This leads to three
cases: (1) If g2 ) 4A, there are monopole configurations
with negative infinite energy. The vacuum is therefore
unstable against production of monopole-antimonopole
pairs and the theory must be discarded. (2) If g~ ( 4A, all
monopole solutions have positive infinite energy. We wi11

return to this case later. (3) If g2 = 4A, the first term on
the right hand side of Eq. (2) is absent, and finite energy
monopole solutions exist, as we now demonstrate.

To begin, we recall that a point magnetic charge gives
rise to a radial magnetic field of magnitude QM/r that is
derived from a vector potential that necessarily possesses
a Dirac string singularity along some line running from
the monopole to spatial infinity. In the quantum theory,
Dirac strings are acceptable as long as they cannot be
detected through the Aharanov-Bohm effect by particles
encircling the string. The analogous criterion in the
classical theory is that the string not be detectable through
the interference of waves in the W field (or any other
charged field) passing on either side of the string. In both
cases, this leads to the quantization condition QM = q/e
where q is either an integer or a half integer and e is
the smallest electric charge in the theory [4]. We will
concentrate for the present on the case QM = 1/e. This
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(4)

(5)
P' = h(r)r",

transformed into a gauge where the Higgs field has a
constant direction in internal space.
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has the advantage of allowing spherically symmetric 5'
fields, which cannot occur [S] for any other value of Q~,
and will also allow us to make the connection with the
't Hooft —Polyakov solution.

The electromagnetic vector potential for the unit

charged point monopole may be written as

A; = E'~3 r~ . 2 . 3

This is spherically symmetric in the sense that the effects
of a spatial rotation can be compensated by a gauge
transformation. Any charged vector field that is also
invariant under the same combination of rotation and

gauge transformation can be written in the form
i u(r)

W, = — [1 —e'@ cos@(1 —cosOJ,
+2 er

1 u(r)
W, . = [1 + ie'~ sing(1 —cos8)],

er
i u(r)

W. = e' sin0.
er

The singularities of these fields along the negative - axis
are purely gauge artifacts, and can be removed by a
gauge transformation that moves the Dirac string. The
singularity at the origin cannot be removed by a gauge
transformation but, as we shall see, it does not entail any
singularity in the energy density.

The vector field (4) leads to a purely radial magnetic
moment of magnitude —

~u~ /er2. By setting u(0) =
Qg/2A = 1, the 1/r2 singularities of F;, and d;, can be
made to cancel in the energy density. This leaves two
other potentially singular contributions. The most dan-

gerous is the term containing the covariant curl, D;W, —

D, W;, in which one might expect a 1/r singularity in

the energy density to arise from the angular derivatives.
However, explicit calculation reveals that the contribu-
tions from these angular derivatives cancel, leaving only
a term proportional to (u'/r)2 that causes no problem as

long as u(r) —u(0) is of order r2 The m. ass term could
also give a singular energy density, proportional to 1/r2,
but this can be avoided by requiring that @(0) = (), so
that m(p) vanishes at the origin. This shielding of the
magnetic charge is energetically favorable only out to a
distance R,„—~gmiv', beyond this distance the energy
is minimized if u and @ rapidly approach 0 and ij, respec-
tively. Standard arguments then show that configuration
of minimum energy (which is a solution to the field equa-
tions everywhere except, possibly, at the origin) has a total
energy Mm» —miv/e2~g.

It was noted above that our Lagrangian is equivalent
to an SU(2) model if g = 2 and A = l. In this case one
can verify that the solution we have found is simply the
familiar SU(2) monopole solution,

1 —u(r)
V~' = egakrp er

Let us now return to the case g- ~ 4A. Although
the first term on the right hand side of Eq. (2) gives
a divergent contribution to the energy, the remaining
contributions can be made finite by the choice u(r) =-

vg/2A + O(r"-), @(r) = O(r) near the origin. This leads
to an energy density which at short distances is essentially
that of a point monopole with a reduced charge Q„i=-

(1 —g2/4A)'~ QM. As with the previous case, u vanishes

rapidly for r ~ R,„—~gm& .
, in this region the energy

density is simply that of an ordinary unit charged point
monopole.

awhile infinite energy solutions such as this do not
correspond to particles of the theory (1), they acquire
physical significance when the theory is coupled to grav-

ity, since the singularity can then be hidden behind the
event horizon of a black hole. Let us begin by recalling
the Reissner-Nordstrom solutions, which describe charged
black holes in a theory governed by the coupled Einstein-
Maxwell equations. For magnetic charge QM = q/e the
metric is

ds = B(r)dt —A(r)dr —r dH —r-sin 8 d@

2MG 4m Gq-

ra

while the vector potential is precisely the Dirac monopole
potential of Eq. (3). Solutions with horizons exist for
all values of the black hole mass greater than the
extremal mass,

$4vr [qf
fPl pt

(the Planck mass mpi = G "-'), for which the horizon
radius rH takes its minimum value,

$47r ~g (

rext ffl p]

The Reissner-Nordstrom black hole is also a solution
to the spontaneously broken SU(2) theory, provided that
the massive vector field vanishes and the scalar field

takes on its vacuum value everywhere. However, there
can also be magnetically charged black holes with "hair, '
i.e., nontrival W and @ fields outside the horizon. Such
solutions [6] exist for a range of parameters that roughly
corresponds to the condition that the "Schwarzschild
radius" 2MG be less than R,„.At large distances these

approach the Reissner-Nordstrom solution, while for
r && R,

„

the metric is approximately Schwaxzsehild.
Thus, these solutions are most naturally viewed as
't Hooft —Polyakov monopoles with small Schwarzschild
black holes located at their centers. In particular, there is
no minimum value for the horizon radius, and hence no

extremal solution.
The existence of these solutions can be understood

by considering small fiuctuations about a Reissner-
Nordstrom solution with magnetic charge 1/e. If the

horizon distance rH ~ R
„„

the energy density just
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where
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(Primes denote differentiation with respect to r.) If we
define a function F(r) by

2GF(r) 4m G f g2 &

r r2e ( 4p j
the gravitational field equations imply that

F'=4mr —+ U, ~.
A )

(14)

The black hole mass M = F(~). A lower bound on this
can be obtained by noting that the horizon radius rH is a
zero of A(r) ' and that Eq. (13) shows that such zeros can
exist only if

$41r & g &' g i'
F(rH) ~ mpi~ 1 ——

~

= M,„,1 ——
4~) '"' 4~)

(13)

(15)
The total mass exceeds F(rH) by an amount equal to the
integral of Eq. (14) from rH to ca. With u(r) behaving
as we expect, this integral will be roughly equal to M,„.
Because a nontrivial u(r) is energetically favorable only
out to distances of order R,„—~gm~', solutions of the
type we seek should exist only if rH ~ R,„.This gives
an upper bound on the mass, and implies that

g2 ) &/2 2

4A
'

2mw

while the horizon radius obeys

( 2 )1/2
ext ( 4~) (17)

Examining the lower bounds, we see that if g 4 4A
(i.e., if there are no finite energy monopoles) there is a
new type of extremal black hole with horizon distance

—Rmon ~R

outside the horizon can be lowered by the creation of
a W field with its magnetic moment arranged to shield
the Coulomb field. One can show [7] that the Reissner-
Nordstrom solution becomes unstable for rH less than a
critical value of order R,„;the configuration to which
this instability leads is just such a black hole with hair.

Since these arguments do not depend on the existence
of an underlying SU(2) synunetry, there should also be
nontrivial solutions for the more general Lagrangian of
Eq. (1). Let us examine this possibility more closely.
We assume static spherically symmetric matter fields as
in Eqs. (3) and (4), and write the metric as in Eq. (6).
The matter portion of the action then takes the form

~matter = 477 dt dr r AB
K(u, P)

A

( 2

+ Ui(u, g) +
~

1 ——,(10)2e2r4 ( 4A

and mass both less than those of the extremal Reissner-
Nordstrom black hole.

Let us now consider solutions with q 4 1. Except
for the singular point monopole in flat spacetime or the
Reissner-Nordstrom black hole, none of these can be
spherically symmetric and analysis of the field equations
becomes much more difficult. However, another line of
attack is available. Consider first the case g & 4A, where
we know that only black hole solutions are possible. The
Reissner-Nordstrom solutions are classically unstable if it
is energetically favorable to shield the magnetic charge by
creating a cloud of W particles just outside the horizon.
For q ) 1 this happens if the horizon distance is less than
a critical value —ggqm~' corresponding to a black hole
mass M„„„,», (q) —ggqmp&/mz. (The corresponding
formulas for q =

2 are obtained by replacing g with

g —2.) If one of these unstable solutions is perturbed, it
will classically evolve to some other black hole solution.
Since the total magnetic flux through the horizon must
be conserved and the horizon cannot bifurcate (at least
classically), this must be a solution of the type we seek,
with nontrivial matter fields outside the horizon and the
original magnetic charge. Thus, there must be new black
hole solutions for all values of the magnetic charge such
that the extremal Reissner-Nordstrom horizon distance is
small enough to allow instability, i.e., for

1(q(q„—e g
mph

(18)
mw

1
and for q =

2 if g —2 ~ (mz/emp|) . [If mz ~
e~gmp&, the inequalities in Eq. (18) cannot be satisfied,
and so we do not expect to find new solutions. In the
context of the spontaneously broken SU(2) theory, it
was shown [6,8] that the static nonsingular monopole
solution is absent if the vector boson mass becomes this
large. ] For any given charge in this range, there will
be new solutions with masses ranging up to M„„„,», (q)
(actually, it appears that the maximum mass is a bit
higher, although of the same order of magnitude) and
down to an extremal value M,„,(q). Without spheri-
cal symmetry, we cannot derive the precise analogs of
Eqs. (16) and (17). However, we expect the extremal
horizon size to scale roughly with q, as it does in the
Reissner-Nordstrom case, and so expect

2 ) 1/2 2

4A) mw

(19)
Matters are somewhat different if g = 4A. In this case

nonsingular static solutions might be possible and could
be found by minimizing the energy among a class of
configurations with fixed magnetic charge. However, in
the absence of spherical symmetry, the minimum energy
configuration for any integral value of q might simply be
a collection of infinitely separated monopoles of lower
charge. This is, in fact, what apparently happens in
the spontaneously broken SU(2) theory (except in the
Bogomol'nyi-Prasad-Sommerfield limit). The existence
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of solutions with half-integer q depends on whether or
not it is possible to construct a finite energy configuration
with such charges (we can show that this cannot be done

1 3
for q = 2, but do not have a result for q ~ 2). If this is
possible for some half-integer values of q, then there will
be a static solution with the lowest such charge.

Now consider black hole solutions when g2 = 4A. The
Reissner-Nordstrom solutions are still unstable for small

enough masses, but there is no guarantee that the end
point of their classical evolution is a black hole with
the same magnetic charge. For integer q, the classical
instability could eventually lead to a Schwarzschild black
hole plus a number of nonsingular monopoles. For half-
integer q, matters are more complicated. If g ) 2, the
Reissner-Nordstrom solution with magnetic charge 1/(2e)
is unstable for small enough mass. Since there are
no nonsingular monopoles with this charge, there must

be a new black hole solution with q = 2, but there need
3 1

not be any with q ~ 2. If g ~ 2, the q = —, Reissner-

Nordstrom solution is stable, but those with q ~
2 need

not be. There must be either a nonsingular monopole
or a new black hole solution with q = 2, although not
necessarily both; one cannot conclude anything about the
solutions with higher charge.

Let us now address the formation and evolution of these
new types of black holes. In theories with nonsingular
monopoles of charge QM = 1/e (i.e., those with g~ =
4A), a Reissner-Nordstrom black hole whose charge was
an integral multiple of 1/e could form by the absorption
of magnetic monopoles by an uncharged Schwarzschild
black hole or by the collapse of matter containing mag-
netic monopoles. Black holes with half-integer charge
could not be formed by these mechanisms. Instead, these
would have to be produced in pairs, perhaps by a quan-
tum tunneling process in a strong magnetic field. No
matter what the production mechanism, evaporation via
the Hawking process would cause the black hole mass
to decrease and the horizon to shrink. When the mass
fell below M„„„,b~„ the black hole would cease to be
Reissner-Nordstrom, and a W cloud would develop out-

side the horizon. As evaporation proceeded further and
the horizon moved inward, it would be energetically fa-
vorable for nonsingular monopoles to be emitted. For
a black hole with integer charge, this would continue
until the charge was reduced to 1/e; in the final stage
of evaporation the horizon would disappear, leaving be-
hind a nonsingular monopole. If there are no nonsingular
monopoles with half-integer charge, black holes with half-

integer charges would not evaporate completely; instead,
they would eventually evolve to a black hole of minimal
half-integer charge.

In theories without nonsingular monopoles (i.e. , gz (
4A), all magnetically charged black holes would have
to be produced in pairs. The evolution of these objects
would be somewhat different. As in the previous case, the
Hawking process would take a Reissner-Nordstrom black

hole down to M„„„,bi„atwhich point a W cloud would

appear outside the horizon. With further evaporation the
horizon would continue to gradually contract until it had
reached extremal size. Because the Hawking temperature
of the resulting extremal hole vanishes, evaporation would
cease at this point. However, further evolution might still
be possible. Magnetic black holes with masses less than
that of the extremal Reissner-Nordstrom solution have the
unusual property that at large separation the Coulomb
repulsion between a pair of holes is stronger than their
gravitation attraction. (Similar behavior has been noted
in theories with massive dilatons [9].) One could ask
whether it would be possible for a black hole in this mass
range to split into two holes of lower charge. This process
is forbidden classically, but it might be possible quantum
mechanically.

To summarize, we have shown that the existence
of finite energy classical magnetic monopole solutions
need not be associated with nontrivial topology. The
consideration of such solutions leads naturally to a new
class of magnetically charged black holes with hair.
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