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A Hierarchy of Superstrings
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We construct a hierarchy of supersymmetric string theories by showing that the general N-extended
superstrings may be viewed as a special class of the (N + 1)-extended superstrings. As a side result,
we find a twisted (N + 2) superconformal algebra realized in the N-extended string.

PACS numbers: 11.25 Hf

Recently the remarkable discovery has been made that
string theories may be interpreted as kinds of sponta-
neously broken phases of those with higher world-sheet
symmetries [1]. In particular, it has been shown that the
N = 0 (N = 1) strings can be viewed as a special class of
vacua for the N = 1 (N = 2) superstrings [1-5]. It has
also been shown that N = 2 superstrings can be regarded
as different phases of N = 4 strings [6]. In this process
it has been observed that a similar structure exists beyond
N = 2 [6,7], and it has been speculated that it is possi-
ble to embed the general N-extended superstrings into the
(N + 1)-extended superstrings for N = 2 [1,2,8], where
by N-extended superstrings we mean those based on the
linear algebras found in Ref. [9].

The purpose of this paper is to realize explicitly the
N-extended superstrings as special choices of the vacua
in the (N + 1)-extended superstrings, and to give a
simple proof that this (N + 1) formulation is equivalent
to the N superstring. In fact, we will show explicitly
the equivalence of the Becchi-Rouet-Stora-Tyutin (BRST)
cohomology and of the operator algebra of the two
formulations. As we will discuss later on, we believe that
this is enough to prove the complete equivalence of the
two models. Our results apply to .general N superstrings
for N = 2, and hence imply that there is an infinite
hierarchy of superstrings. We also find a twisted (N + 2)
superconformal symmetry realized in the N string.

We will use the N-extended superspace to describe
these theories. Our conventions follow closely those of
Ref. [10]: Z = (z,0') with i = 1,2,...,N denoting the
N-extended supercoordinates and

Di = aoi + 0i62, {D,‘,Dj} = 25,']'62,

i =6} — 65,
In =2 —122 — 6165, oN = mfj""j'vej' Qv
NI = .(F__l)'ejlu-jN—l‘ Qir...@in-1 . (1)

The N superconformal algebra (SCA) is generated by
the super stress tensor 7, which satisfies the operator
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product expansion (OPE),
oN N
TZ)T(Z) ~ 5|2 -
z 2

N-i N
d _;—DiT(ZZ) + 07 aT(Zy), (2)

)T(Zz)

+

where we have used the shorthand notation z = z;» and
6V = 67}. Central extensions can appear for N < 4 [10].
However, we will mainly focus on the cases which do
not have central extensions (N = 5), or have a vanishing
value for the critical central charges (N = 3,4). We will
comment on the case N = 2 later on. One can construct a
string theory by using the N SCA as the (chiral) constraint
algebra defining the states of the string. This information
is encoded in a nilpotent BRST operator, constructed as
the superspace integral of the BRST current Qy,

On = [T + 3 T(B,,C)], 3)

where the reparametrization ghosts (B,,C,) are fields of
spin (2 — N/2, —1), C, being anticommuting for any N,
and T(B, C) denotes the super stress tensor of an arbitrary
BC system,

T(B,C) =(—1)N<fc“>(—/\33 dC + Ac BC

Vi D;B D,~C). 4)

In this last formula, A and e denote the conformal spin and
Grassmann character of a field (even e for bosonic fields
and odd e for fermionic ones), respectively, and satisfy

N
/\B+AC=1——,

2 €g + €c = N. (5)
We also use the following correlator for a BC system
N
C(Z)B(Zy) ~ =12 6)
212

The OPE of the BRST currents with itself can be
computed and is given by

_1\V gN
On(Z)On(Z,) ~ o8

7 . D;[(D;C)ON1(Zy). (D)
Z

1199
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However, one can improve the BRST current by a total
derivative term

~ | .
Oy = 0y — ZDi [(D,-C,)B,C,J (8)
to make it completely nilpotent
oV N
T(Z,)T(Z,) ~ j<2 - ‘;)T(Zv) +
6" (3 N
T(2))G(Zy) ~ = (7 - 7)6(22)

A
G(21)G(Z) ~ = 2T(Z,).

1
+ 3 D;G(Z>)

On(Z)) ON(Zy) ~ 0. (9)

This result will be helpful in constructing the general

embedding to be discussed shortly and, more generally, to

uncover a twisted (N + 2) SCA realized in the N string.
The (N + 1) SCA in N superfields is given by

N (}N o
777777 T aT(Zy)
é.\ ! \ N

8,
-+ fﬁG(Z:L (H))

This algebra can be written as in (2) using (N + 1)
superfields and with the (N + 1) stress tensor defined in
an obvious notation by Ty+; = Gy/2 + Oy+1Ty. Again,
all the information on physical states of the (N + 1) string
theory is encoded in the BRST current for the (N + 1)
algebra,

Q =C.T + C,G
+ C[5T(B..C)) + T(B,.Cp)) — C2B,. (11)

where the anticommuting reparametrization ghosts C, and
the commuting supersymmetry ghost C, have spins —I
and — %, respectively.

The embedding of the N string into the (N + 1) string
is achieved as follows. We first take an arbitrary matter
background T, for the N string which satisfies Eq. (2).
We then add to this a BC system denoted by (7, ¢), with ¢
anticommuting and with spin — % The spin and statistics
of 7 then follow from Eq. (5). With these ingredients at
hand, we can construct the following background for the
(N + 1) string:

T =T, +T(n§),
N
G=n+§rm+(——1

2
(="

4
where T(n,¢) is the super stress tensor for the (7, ¢)
system. One can show that these generators indeed satisfy
the operator products given in Eq. (10).

This construction is easy to understand. The supersym-
metry generator G has the structure G ~ n + QOn(7, £),
where Qn(7n, ) is the improved BRST current of Eq. (8)
with the reparametrization ghosts (B;,C,) replaced by
(n,€&). Since the improved BRST current is fully nilpo-
tent, only the contractions between 7 and Qn(7, £) are
nonvanishing and generate the super stress tensor 7, as
can be imagined recalling the usual BRST algebra. Note,
however, that the spin of the (5, ¢) system gets modified
to the values (% - N/2,— %) while (B,, C,) had originally
spin (2 — N/2,—1). Actually, this construction can be ex-
tended to reveal a twisted (N + 2) algebra in the N string.

)§n8§

+

(D€ — % (D) (D)€ (12)
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We will postpone the description of such an algebra to
the end of the paper. Note also that one can think of
(n. &) as fields with the same quantum number of (B,, C,)
but opposite statistics, so that they will cancel each other
through the BRST quartet mechanism.

The BRST current corresponding to the particular
background just constructed is obtained by substituting
Eq. (12) into Eq. (11).

QN#I ZCI[TM + 7(7],6)]
N
+C£[’7+§Tm+(\'"; ~l)§n6§

(D" 2 ! ]
S n(D;§)” = = (Din) (D, €)¢

1

d

- -
i i

1
+ C,L7T(B,.C,) + T(BH.C'&,)J - C

2

g

B, .
(13)

To prove that this particular class of (N + 1) string
theories is equivalent to the N string, we perform a
canonical transformation to map Qun+; onto Oy + Qiop-
where Qy was given in (3) and

Qlup - Cf: n

gives the BRST charge for a trivial topological sector.
This was the strategy already employed in Refs. [3-6],
where a canonical transformation was used to map the
operator algebra of the (N + 1) supersymmetric formu-
lation of the N string onto the operator algebra of the
standard formulation for N = 0, 1.2. In particular, we fol-
low Ref. [4] which presented the canonical transformation
factorized in three parts, each of which is of simpler con-
struction and interpretation. The first transformation we
perform is generated by

R, = fB,C},,.g—‘,

(14)

(15)

where ¢ denotes superspace integration. The property of
R, is to make T, inert under the extra supersymmetry
generated by G. We find that this transformation acts as
follows:
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Q;V%—l = eRlQN~0>le_Rl = [T, + %T(B,, C,) + T(Bg,Cg) + T(n’f)]

1
- Cg'fT(Bg’Cg) + Cg("’ + Ef"l & +

Here we consistently drop total derivative terms which |

may appear on the right hand side of this equation, since
they will not affect the BRST charge. Next, we perform
a second transformation generated by

R =f[(% - %)Bgcgg € + %cgg D;£D;B,
+ 5(En - C,BY D87 a7

to simplify the BRST algebra in the (B, C, 77, £) topo-
logical sector. This casts the BRST charge into

— 1
Q}I\;H = eRZQ;VHe R = CT, + ET(Bt,Ct)

+ T(B;, Cg) + T(n,6)] + Cem. (18)
A final transformation generated by

- fler (3 - 2o

_1\V
+ %agg £ - %Disg D,-g“ (19)

is used to decouple the BRST reparametrizations from the
topological sector. It maps modulo total derivatives (18)
onto Oy + QOiop, as given in Egs. (3) and (14).

Obviously the BRST charges constructed out of Qy
and Q,,p commute with each other and are nilpotent,
giving separate conditions on the physical states. The
topological charge § QOop imposes the condition that the
fields (Bg, Cg,m, £) fall into a quartet representation of
the charge and decouple from the physical subspace, and
we are left with the degrees of freedom of the N su-
perstring only. Note also that our similarity transforma-
tions manifestly preserve the operator algebra. Thus the
(N + 1) string propagating in the background described
by Egs. (12) is equivalent to the N string.

It would be appropriate to be more careful in claiming
the complete equivalence of the two formulations includ-
ing scattering loop amplitudes, since our above method
does not show explicitly how the integration over the
moduli space and the sum over spin structures, neces-
sary to define string amplitudes, would work out. In fact
the moduli space for the N-extended super Riemann sur-
faces has not even been analyzed in the literature. Of
course if we employ the unitarity principle, our above re-
sults are enough to establish the complete equivalence.
To be more specific, one can define the N string by a
Polyakov path integral, the action being given by an N-
supersymmetric system coupled to N supergravity (exam-
ples of such systems can be constructed easily, e.g., in
the Hamiltonian formalism). Gauge fixing to the confor-
mal gauge (e.g., using the Lagrangian BRST formalism

(-
4

n(oif)z). (16)

of Batalin and Vilkovisky) gives the type of fields con-
sidered above. Scattering amplitudes are then implicitly
defined: One has to compute correlators of vertex oper-
ators corresponding to the states of the string. However,
on a topologically nontrivial world sheet the choice of the
conformal gauge is not strictly speaking allowed, since
there are parts of the supergeometry that cannot be gauge
fixed. Nevertheless, one can still gauge fix to the con-
formal gauge, but the action thus obtained is not com-
pletely gauge fixed since there are extra gauge symmetries
present in the ghost action. In fact it is well known that on
a topologically nontrivial surface there are zero modes in
the ghost action [a sum of (b, ¢) systems with appropriate
spins] which satisfy the Riemann-Roch theorem. These
zero modes are responsible for the extra gauge symme-
tries. In particular, the gauge symmetries arising from
the zero modes of the antighosts are due to the fact that
we employed a too stringent gauge choice. As shown in
Ref. [11], the integration over the moduli with the proper
measure can be seen as arising from gauge fixing the zero
modes of the antighosts. Returning to our embeddings,
the fact that the extra moduli, present in the (N + 1) string
as compared to the N string, cancel out in the (N + 1) for-
mulation of the N string, when paired with similar “mod-
uli” corresponding to the zero modes of the (5, £) system,
is guaranteed by the BRST invariance of the model. The
BRST symmetry organizes these moduli in a quartet with
the corresponding ghost for ghosts and guarantees their
decoupling, independently of the specific structure of the
modular integration. One can also check that the phases
to be assigned to the various spin structures of the fields in
the (5, £) system can be chosen to assure the unitarity of
the theory, as shown in Ref. [1] for the embedding N = 0
into N = 1. It is beyond the scope of the present Letter to
provide an explicit proof of all these points, but it seems
worthwhile to analyze them further.

So far we have restricted ourselves to the cases N = 3.
For the embedding N = 2 into N = 3, one has to recall
that there is a central extension ~ c¢/3z% appearing on
the right hand side of Eq. (2) with the critical value
c = 6. However, this central charge is balanced by
a contribution ¢ = —6 due to the (n,£) system. We
have checked that our realization (12) as well as our
canonical transformations also work in this case. Thus
our construction is valid for arbitrary N = 2 and, when
combined with the embeddings found in Ref. [1], leads to
the amazing result that there exists an infinite hierarchy of
superstrings.

We have also found that out of T,, and (5, £) one can
construct an (N + 2) SCA:
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T(Z)T(Z) ~ &

T(Z))G™(Z,) ~ 0

(4]

W% T w3
N Z N2 e N2
2/—\/_\/\

I

(2 - %)T(zz) + 0 -

N-1

I 6"
-5 DiT(Zy) + — 9T(Zy).

N 1 H;‘\'
5 DiGT(Zy) + —— 4G~ (Zy).

N 01\' US| 0A\
T(Z)J(Z2) ~ D)oz + L vz + oz, 20
N _ N N-r , A 1
G (Z)G (Zy) ~ 1 — 5 J(Z,) + -5 D;J(Zy) + - T + ;‘8])(23).
J(Z)G* (Zy) ~ = - G* (Z,).
The realization is given by
T =T, + T(n,§)
G = n, .
N -1)" N 2
G = e+ (5 = 1)enae - S qwier. 2
J = né&.
This is the twisted (N + 2) SCA present in the N string. ‘osaka-u.ac.jp
In fact, the fields (7, ¢) correspond to the ghosts (B,,C,), *Permanent address: Department of Physics, Osaka
but their stress tensor is twisted in order to shift the University, Machikaneyama-cho 1-16, Toyonaka, Osaka
spins from the value (2 — N/2, —1) to the value (% - 560, Japan.

N/2, —%). For N = 2, this reduces to the special case
known in the literature [12]. That such a construction was
possible was suggested by Berkovits as reported in the
first of Ref. [12]. One can use it to construct a consistent
background for the (N + 2) string, and by performing
canonical transformations it is possible to show that this
formulation is also equivalent to the N string, as explicitly
demonstrated in Ref. [6] for the case N = 2.

Concerning linear superalgebras, it remains to be seen
if one can formulate the small N = 4 superstring [9] with
SU(2) symmetry as a particular class of the large N =
4 superstring and the general large N = 4 superstrings
depending on a free parameter x [10,13] as special
backgrounds for the N =5 strings. Another line of
investigation is to try to embed strings into W strings.
For recent advances in this latter topic, see Ref. [14]. We
hope to discuss these issues elsewhere.
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