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We derive covariant, reparametrization invariant, hydrodynamical equations for a fluctuating fluid

membrane, which describe both tangent-plane motion and shape-changing normal motion. We calculate
the renormalization of parameters of a Rouse model in which there is a friction force proportional to the
local membrane velocity. Our calculations include both the Fadeev-Popov determinant and a Liouville-
like factor needed to ensure rotational invariance.

PACS numbers: 87.22.Bt, 03.40.6c, 05.40.+j

Two-dimensional fluid membranes occur in a wide
variety of physical and biological systems [1—3]. For
example, when surfactant molecules consisting of a polar
head group and a hydrocarbon tail are dissolved in

water, they self-assemble into flexible bilayer membranes,
which can organize into a variety [1,4] of structures,
including lamellar phases in which nearly flat membranes
form a periodic stack. The statistical and thermodynamic
properties of fluid membranes [3] and the phases that they
form are well described by a phenomenological model

[5] in which membranes are viewed as 2D fluids with
energies that depend only on shape, total area, and local
2D mass density if the membrane is compressible.

The dynamical properties of fluid membranes have re-
ceived far less attention even though many experiments

[6] provide dynamical as well as static information. In
this paper, we outline the derivation of the equations
governing the long-wavelength, low-frequency hydrody-
namics of flexible fluid membranes. These equations are
invariant under general time-dependent reparametrizations
and reduce to those describing a two-dimensional fluid

when the membrane is constrained to lie flat and not
to change its shape. They also describe low-frequency
modes associated with shape variations and couplings be-
tween shape modes and the tangent plane modes of a 2D
fluid. Our treatment has much in common with that of
Goldstein, Langer, and Jackson [7], who consider the dy-
namics of "fluid" interfaces without internal degrees of
freedom.

Membranes can interact in different ways with the
medium that surrounds them. Generally, they are imbed-

ded in some 3D fluid, whose dynamics is governed by
the 3D Navier-Stokes equations. Interactions between
membranes and fluid are then determined by boundary
conditions at the membrane-fluid interface. Though our
formulation is sufficiently general to treat this situation,
we focus our attention on the membrane generalization
of the Rouse model [8] in which motion of the mem-

brane relative to a rigid surrounding medium gives rise
to a friction force proportional to the local membrane ve-

locity. Applying field-theoretic techniques [9,10] used in

the study of dynamic critical phenomena, we calculate

how long-wavelength static and dynamic coefficients of
this model are renormalized under removal of high-wave-
number degrees of freedom.

In addition to reproducing previous results [11—14] for
the renormalization of the bending rigidity and surface
tension, our calculations yield two new results of experi-
mental importance. The first is that because of local
crumpling [15,16], a nearly flat membrane will be com-
pressible at long length scales even if it is incompressible
at the shortest length scales. As a result, it will have a
density mode that is distinct from the height mode. Both
density and height modes are needed to reproduce the ex-
perimentally observed hydrodynanuc modes [6,17] in a
lamellar phases. The second result is that dynamic fric-
tion coefficients undergo independent length scale renor-
malization. Thus, the renormalization of the frequency of
dynamical modes cannot be determined by static quanti-
ties (such as the bending rigidity) alone.

The field-theoretic description of fiuid membranes

presents two complications not found in more familiar
theories. The first is that the Fadeev-Popov determinant

[18] associated with fixing a gauge (or in this case
a parametrization of surfaces) depends on membrane

configuration. The second is that the number of degrees
of freedom of membranes with different areas differ, and

statistical sums over membranes of differing areas must

be modified via the introduction of a term analogous to
the Liouville factor [19,20] of string theories to reflect
this difference. These two complications lead to an

equilibrium probability distribution in a particular gauge
that is not proportional simply to e ~lr where M is
the Hamiltonian and T the temperature. Corrections to
e ~1T are present even in the purely static theory and
will be discussed in detail in a separate publication [20].

Membrane coordinates in 3D Euclidean space are

specified by a vector R(u) as a function of a 2D parameter
u = (u', u2). The energy of the membrane cannot depend
on the way in which R is parametrized and must, there-

fore, be invariant under reparametrization transformations

of the form u u' = 8(u). If the membrane is com-

pressible, energies will depend on the local mass density

p(u). The simplest Hamiltonian [5,17] describing a free
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compressible membrane is

f d'u~gH' + f d'u~g(f(p) —pp], (()

where g = detg, b is the determinant of the metric tensor

g,b
= & R &bR (a, b = 1,2), g'"gj„= Bb, and H =

K; is the mean curvature where K," = g 'K„and K,b

is the curvature tensor. f(p) is the local Helmholtz
free energy density (which could have gradient terms
in p), and p, is the chemical potential for particles in
the membrane. In the Monge gauge, u = (x, y) is a
coordinate in the x-y plane, and R = (x, y, h(x, y)) so that
H = V2h to lowest order in h. The free energy density f
can be expanded in powers of the deviation b p = p —

pp
from the mean-field equilibrium density pp determined by
the equation of state, Bf/ap = ju. To harmonic order
in (j)p, f = fp + (1/2)gp '((I)p) + p, Bp where gp is the
harmonic membrane compressibility.

To develop a hydrodynamical theory for any system,
we need to identify all conservation laws and broken con-
tinuous symmetries. In a free membrane, energy, mass,
and momentum are conserved. In addition, rigid trans-
lations of the membrane cost no energy. For simplic-
ity, we will ignore energy conservation and assume all
processes take place at constant temperature. Thus, the
mass density p, tangent-plane momentum density j', and
position R are the membrane hydrodynamical variables
whose characteristic frequencies go to zero at long wave-
length. To discuss properties under reparametrization, it
is useful to introduce explicit representations for these
variables. Let uo be some time-independent parametriza-
tion, and let up (t) be the coordinate at time t in this
space of the particle (molecule) of mass m in the mem-
brane labeled a. Then Euclidean space coordinates of
the membrane are given by R(up, t), and the position of
particle a is R(up (t), t). One can now introduce time-
dependent parametrization via a time-dependent trans-
formation u(t) = 0', (up) and u (t) = 0', (up (t)), where
0,(u) is a single-valued function of u at each t. The mem-
brane mass density is then

p(u, t) = /mal(u(t) —u (t)).
1

g t a

Here g(t) is the determinant of the time-dependent metric
tensor g,b(t) This de.nsity transforms as a scalar under
arbitrary time-dependent reparametrizations; i.e., if u' =
Q, (u) for a single-valued function Q„ then p(u) = p'(u')
where p' is the transformed density obtained by replacing

by u' = Q, (u ) in Eq. (2). The tangent-plane momen-
tum density j'(u, t) is the current of the conserved den-
sity p.'

(4)

~-= 1 1
Dgp+ D j' —= &g Jgp+ & Jgj' =0, (3)

~g
where gjgf(u, t) = gjf(u, t)/Bt~„and-

1j'(u, t) = emu'(t)B(u(t) —u (t)).
a

The derivatives D, = g '/-B, g'/ and D, are, re-
spectively, temporal and spatial covariant derivatives.
The transformation rule for the momentum density
under reparametrizations is j'(u) = (Bu'/Bu'")[j' (u')—
Bju'bp'(u')], which reproduce the familiar result
j'(u) = j"(u') + v'p'(u') for Galiliean transformations
u' = u —vt where v is a constant velocity. The conser-
vation law, Eq. (3), is invariant under reparametrizations.

The mass density in 3D Euclidean space expressed
in terms of p(u) is p3(x) = f d u~gp(u)b(x —R(u, t)).
The 3D momentum density J3(x, t) can be cal-
culated using Bjp3 + V J3 = 0. The result is

J3(x) = fd2u~gJ(u)B(x —R(u, t)), where

J(u) = j'e, + pa(R

is the membrane momentum density with e, = B,R a
covariant tangent plane vector. J(u) has components both
parallel and perpendicular to the local tangent plane.
Components parallel to the tangent plane can arise either
from the tangent plane momentum j' or from B(R, but
the component of J normal to the membrane must come
from the B,R. Different parametrizations will lead to
different values of j' and e' B,R, but leave J unchanged
[i.e., J(u) = J'(u')]. For example, translation of a flat
membrane lying in the x-y plane with a constant velocity
v in the x direction can be described by j' = 0 and R =
(x + vt, y, O) or by j" = pv, jY = 0, and R = (x, y, O).

The dynamical equations for j' can now be obtained
from the force equation [21],

B(J3j + Vj(vj J3;) = f;, (6)

where v(x) = J3/p3 [or equivalently v(u) = v(R(u)) =
J/p] is the membrane velocity, and f; is the force density
arising from membrane forces and dissipative couplings.
Equation (6) is the complete nonlinear force equation.
It reduces to Euler's equation for a three-dimensional
isotropic fluid when J3 = p3v and f; = V, o;, , whe.re o.;,
is the stress tensor. The contribution to f; from reversible
membrane forces is

f; = —f d'u ggj jgR;(g) g(x —R(u, t)),

where the derivative is taken at constant ~gp (see [22]).
The force equation for J3 can be reexpressed as an
equation involving only membrane variables:

1
D,J + D,[(j'/p)J] = — + f&;g + g, (8)ggBR u

where f~;, is the dissipative force density and g is a
random Langevin force. This equation is invariant under
reparametrizations. 'VVhen M is given by Eq. (1), then

1 bA = e,"Bbp + [jgQ —o(p)H]N,

where p =——gr(p) = —(f —pgjf/Bp) = —o. + pp~p 'Bp
is the 2D membrane pressure, N is the unit normal

ll87



VOLUME 73, NUMBER 8 P H Y 8 ICAL REVIEW LETTERS 22 AUGUST 1994

to the membrane, and Q = H(Kb —26bH)(K,"—
&bbH) + D H, where D is the covariant Laplacian,

g '/2B g'i' g'"Bb. To linear order in the Monge gauge,
K Q trH = tr V h + KV h. If motion perpendicular
to the membrane is prohibited, then all properties are
intrinsic and Eqs. (3) and (8) reduce to equations such
as those used in general-relativistic hydrodynamics [23].
They are also equivalent to the equations derived in
Ref. [24] when Q = 0.

The dissipative force density fd;, in general has contri-
butions arising from interactions of the membrane with
its surrounding medium and from intramembrane vis-
cous forces. The latter are subdominant when the for-
mer are present, and we will ignore them. Interactions
with the surrounding medium can be described by a phe-
nomenological friction force proportional to the differ-
ence between the membrane velocity v = J/p = v„N +
v'e, and the medium velocity V = V„N + V'e, at the
membrane:

poD (BrR . e') + (po/y~)D g = 0

F„=N . B,R + («Q —o H)/y„

+ poXo '/y. Hh —C./y. = o

where g„= f N and f' =
g e'. Equations (11)define

the functions F„and Fp. In the Monge gauge, the
equation for F„can be written as

Fh = ~gF„= B,h + ~g BA ——=0
Bh y„

P

(12)

where +g = [1 + (Vh)2]'t2 and gh
= ~gg„and where we

used the fact that n3 = g '/ . When changes in density
are suppressed, this equation reduces to the nonlinear
rotationally invariant Kardar-Parisi-Zhang equation [25]
for interface growth in the limit of zero velocity. In the
harmonic limit and in the absence of noise, the equations
for p and h reduce to

2

a,p = V Bp, B,h = — ( trV —+ «—V )h,
A'0'Yt Pn

(13)
and predict a density mode with dispersion tv =

i(popo '/y—,)q and a height mode with dispersion
co = i(trq + «—q )/y„. The density mode is identical
to that for thin films on a solid substrate [26].
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fd;, = —y„(v„—V„)N —y, (v' —V')e, , (10)
with different friction coefficients y„and y, for flow
perpendicular and parallel to the membrane. No slip
boundary conditions are obtained by setting y„= y, = ~,
and the Rouse model by setting V = 0.

We now restrict our attention to the Rouse model at
low frequency where the inertial and nonlinear terms on
the left hand side of Eq. (8) can be neglected. We also
retain only linear terms in Bp in the force. In this case,
the dynamical equations become

F = Di(po + ~p) — poXo '/y D'~ p

The Langevin noise f(u, t) is a stochastic force
arising from high-wave-number degrees of freedom.
Its statistical properties should be chosen so that the
time-dependent probability distribution for observable
decays to the equilibrium distribution at long times. In
flat-space systems without a gauge symmetry, the thermal
equilibrium probability distribution P is proportional
to e ~~T, and this condition is met by choosing the
Langevin noise to have a zero mean and a white noise
spectrum. In the present case, the equilibrium distribution
in a particular gauge is proportional to AFpkge
where b, F is the Fadeev-Popov determinant [18] and
b, L is the Liouville factor [19,20] relating the measure
of a general fluctuating surface to a reference surface
with a grid in which each area element in parameter
space maps onto equal area elements of the physical
surface. In the Monge gauge [14,20] App = g g
and At. = exp[ —p, l f d2x(Vh)2] to lowest order in h,
where p, ] is a temperature-dependent potential. To
lowest order in the temperature, p, l

= B&r/8A„where
Br = T f [d2q/(2m)2]in[(o. q + «q )A /T] is the one-

loop correction to the surface tension with A the wave-
number cutoff, A„ the cutoff along the direction x, and
A the thermal wavelength. The factors AFp and hL lead
to the probability distribution P —exp[ —(& + 9fz)T]
where to lowest order in (Vh)2, Aq = p, q f d~x(Vh)~,

where pq = T f d2q/(2m)2 + p, i. If we choose (gt, ) =
~g(8 9fq/Bh) and

(6s'(u, t)6$, (u', t')) = 2Ty;, g
't 6(u —u')6(t —t'1,

(14)

where y;, = y„n;nj + p, e,'e,J, then the dynamic proba-

bility distribution will decay to e {~+~'tr at long time.
Equations (11) and (12) are nonlinear and lead to

couplings between the density and height modes. To
study the effects of these couplings perturbatively, it
is convenient to introduce a generating function similar
to those used in the study of stochastic equations and

dynamic critical phenomena [9,10], and we define Z =
(fdF~dFhB(F~)6(Ft, )) where the brackets () signify an

average over the random noise and Fp and Fh are the

equations of motion defined in Eqs. (11) and (12). We
then introduce fields p and h to provide an integral
representation of the delta functions. The generating
function is then Z = f 17[p]Z)[h]17[Bp]&[h]e 'where
L = f dtd'xX and

L = h B,h + ~gy„'[«Q —tr(p)H + 8&t,/Bh]

+ J~i Io (~o + ~s ) — s iso '/~ )0'~c
—poD, (B,R . e')] + ~g poT/y, D,pD'p

—ln J + T~gy„'h {15)

Here J is related to the Jacobian of the transformation
from Fp and FI, to Bp and h. It plays no role in the one-

loop calculations we present here.
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We can now calculate how parameters in 5 renormal-
ize under the removal of high-wave-number degrees of
freedom. Using standard renormalization procedures, we
remove height degrees of freedom with wave numbers in
the shell A/e' ( q & A and rescale wave number accord-
ing to q ~ e 'q without rescaling fields. Our results are

do
dl

TA2
In[(a A' + o)It'/-T],

4m

dK 3T KA

dl 4mKA2+ o-' (17)

p02T+
dl 4m. trA + o. 4n. (trA& + tr)z

' (18)

dy
dl

(19)

d +II

dl
T A2

Pn
47T KA2 + CT

(20)

There are several observations to make about these
results. First, the equations governing the renormalization
of tr and o. are identical to those obtained previously
[11—13] from static equilibrium calculations. Second,
Eq. (18) for equilibrium compressibility is a new result
showing that g at length scale A' ' is greater than g
at the shorter length scale A '. The physical origin
of this effect is membrane crumpling. It is easier to
compress a crumpled than a flat membrane. At the
molecular length scale, there is no crumpling, but at larger
scales there is. Even if the membrane is incompressible
[go = g(A) = 0] at the molecular length scale, it is
necessarily compressible at longer length scales. Third,
we find nontrivial rescaling of the friction coefficients y„
and y, implying that the renormalization of dynamical
modes cannot be determined by renormalization of static
coefficients alone. Finally, we emphasize the necessity
of including both Fadeev-Popov and Liouville factors to
obtain the proper rotationally invariant renormalization
of the surface tension cr from a correlation function
rather than from a free energy. In static calculations,
one can always use the free energy to calculate o., but
the same Fadeev-Popov and Liouville corrections are
required to obtain cr from a height-height correlation
function. Details of the derivation of the Liouville factor
b, t. appear in a separate paper [20]. Free energies cannot
be calculated in a dynamical calculation, and o. must be
obtained from a correlation function.
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