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Stability of Ferromagnetism in the Hubbard Model
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Recently certain Hubbard models with Oat lowest bands were proved to exhibit ferromagnetism.
Here we study perturbed models with nearly flat bands. %e prove that the ferromagnetic state is
stable against a single-spin flip for sufficiently large Coulomb interaction U, but is unstable for small
U ) 0. This is the first time that the (local) stability of ferromagnetism is proved in nonsingular
Hubbard models, in which we must overcome competition between the kinetic energy and the Coulomb
interaction.

PACS numbers: 75.10.Lp

It is believed that (spin-independent) Coulomb interac-
tion in some itinerant electron systems can be the origin
of ferromagnetism. In spite of considerable interest over
the long history, the mechanism of ferromagnetism still
remains to be understood [1]. Recently Mielke [2] and
Tasaki [3] proved that certain Hubbard models exhibit
ferromagnetism when the Coulomb interaction U is finite

[4]. The models they treated are special in that, in each
model, the lowest band in the single-electron spectrum
is completely fiat (i.e., dispersionless). It was conjectured
that the ferromagnetism in these flat-band models survives
if we add small perturbation to the hopping matrices (thus
making the lowest band nonflat), provided that U is suf-

ficiently large. Kusakabe and Aoki [5] presented results
from numerical experiments and variational calculations,
which supported this conjecture.

We stress that this is a very delicate conjecture for
the following reasons. (i) When the ground state has a
ferromagnetic order, there exist spin-wave (or magnon, or
Nambu-Goldstone) excitations whose excitation energies
decrease as L as the linear size L of the system gets
larger. The total energy of the perturbation, on the other
hand, increases as L", indicating that the perturbation
is by no means small. (ii) It is believed that the
ground state of the perturbed model is spin singlet for
sufficiently small U, so we must have finite U in order
to stabilize ferromagnetism. To show the existence of
ferromagnetism is a truly "nonperturbative" problem, in
which we have to overcome the notorious "competition"
between the kinetic energy and the Coulomb interaction.

In the present Letter, we announce the first important

step towards the solution of this problem. We treat mod-

els with nearly flat bands obtained by adding perturbations
to the hopping matrices of the flat-band models. For suf-

ficiently large U, we prove that the ferromagnetic state
is stable under a single-spin flip. This result, along with

the strong results for the flat-band models, indicates that
the ferromagnetic state is the true ground state of the
present models for sufficiently large U. We also prove
that, in a certain range of U, the spin-wave dispersion re-
lations of the present models behave exactly as those in

the Heisenberg ferromagnet, thus confirming the conjec-

ture of Kusakabe and Aoki [5]. This indicates that the
ferromagnetism in our models is not pathological. As far
as we know, this is the first time that the (local) stability
of ferromagnetism is proved [6] in truly nonsingular Hub-

bard models, overcoming the competition between the ki-
netic energy and the Coulomb interaction. See [3,7] for
further discussions about ferromagnetism in the Hubbard
model [8].

Definitions and main results For s.im—plicity, we de-
scribe our results for a class of models on the decorated
hypercubic lattice [3]. The results extend to a larger class
of perturbed fiat-band models [7]. Let L (C Z") be the
d-dimensional L X x L hypercubic lattice with peri-
odic boundary conditions, where d = 1,2, 3, . . . . A site
x E L is written as x = (xi, . . . , xd) with each component
x; being an integer with [x;) ~ (L —1)/2. (We assume L
is odd. ) Let U be the set of points taken at the center
of each bond in L. We define our Hubbard models on
the decorated lattice A = 2 U 'U. As usual, we denote

by c„,c, , and n„= ct e„ the creation, annihilation,
and number operators, respectively, of an electron at site
x E A with spin o. =f, &.

We study the standard Hubbard Hamiltonian

H = g g t„yet.cy. + U g n„,n„i,
o.='t,) x,y GA

where U ~ 0 is the on-site Coulomb repulsion energy

[9], and the hopping matrix elements are written as t„, =
tp + at„' . Here tlnl = tin are the hopping matrix ele-
ments of the fiat-band model of [3]. There are nonvan-

ishing nearest and next-nearest neighbor hoppings which
are written in terms of two parameters t ) 0 and A & 0
as (i) t„o = 2dt if x E 5, (ii) t1ol = A2t if x E 'U, (iii)
ti =t if x,yEL and ~x —y[=1, (iv) tel=At if
~x —

y~ = 1/2, and (v) tP = 0 otherwise (Fig. 1). The
parameter ~ ~ 0 determines the magnitude of perturba-

tion to the hopping matrix. The perturbation (t„]is ar-

bitrary, except for the requirements that (i) t' = t', for
any x, y E A, (ii) t,'+, +, = t„' for any x, y E A and any

z E Z", (iii) P~ ~t„' [
~ t for any x, and (iv) t„' = 0 for

any x, y with ~x
—

y~ ) R, where R is a finite constant.
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FIG. 1. The two dimensional lattice, and the hopping matrix
elements of the flat-band model. We add arbitrary small
hoppings as a perturbation, thus making the lowest band
nonflat.

The single-electron Schrodinger equation correspond-
ing to (1) is

txy yy = aux (2)
yEA

where p = (p„),&~ is a wave function [i.e., a (d + 1)L—
dimensional vector] and e is the energy eigenvalue.
When K = 0 (i.e., t,Y

= t~o~), the ground states of the
Schrodinger equation (2) are L"-fold degenerate, and form
a fiat band. Remaining dLd eigenvalues of (2) form upper
bands, which are separated from the flat lowest band by
a band gap A t. For ~ ) 0, the degeneracy in the lowest
band is lifted for a generic choice of (t„' ), and we get a
nonflat band.

Throughout the present Letter, we only consider many-
electron states in which the total electron number [i.e.,
eigenvalue of Q„EA(n, t + n„t)] is fixed to L . This
corresponds to the (2(d + 1)) ' filling of the whole bands,
or the half filling of the lowest band [10].

As usual, we define the total spin operators by S&,t =(3)

QEA(n„t —n„t)/2, and (St t) = g, Y~p(S„+SY +
S„S+)/2 + (St,t)2, where S+ = c tc,t and S„=(S+)t.
We denote an eigenvalue of (S„,)2 as S„,(S„, + 1). We
write S,„=Ld/2, which is the maximum possible value
of S„,. The following theorem of [3] establishes the
existence of ferromagnetism in the fiat-band model.

Theorem I.—When ~ = 0, the ground state of the
Hamiltonian (1) has S„,= S,„, and is nondegenerate
apart from the trivial (2S + 1)-fold degeneracy.

The purpose of the present Letter is to discuss the cases
with sc 4 0, where the lowest band is no longer flat. We
shall assume that the (dimensionless) parameters K and A

satisfy x ~ ~p and A ~ Ap, where the constants ~p and Ap

(which are determined in the proof) depend only on the
dimension d and the range R of the hopping.

Let us denote by E(S„,) the lowest energy among the
(Ld-electron) states which have the total spin equal to
St t It is easy to see that the state which gives the
lowest energy E(S ) in the sector with S„, = S is
unique (apart from the spin degeneracy), and is obtained
by completely filling the lowest band by spin-up electrons.

For convenience, we call this state the "ferromagnetic
ground state" although it may not be the true ground
state. The following theorem establishes the stability and
instability of the ferromagnetic ground state against a
single-spin flip.

Theorem II.—Suppose that C~A2t~ ( U, where C~ is
a positive finite constant which depends only on d and
R. Then the ferromagnetic ground state is stable under
a single-spin fiip in the sense that E(S,„)( E(S,„—
1). On the other hand, when we have 0 ~ U ( C2,
the ferromagnetic ground state is unstable as E(S,„))
E(S —1). Here C2 is a non-negative (generically
strictly positive) constant proportional to the bandwidth
of the lowest band.

By 7„we denote the translation operator by a lattice
vector x E Zd. Let E(k) be the energy of the elementary
spin-wave excitation with the wave number vector k,
which is defined as the lowest energy among the states

that satisfy S„t@= (S,„—1)4, and r, [4] = e'~ "4
for any x 6 X. Here the wave number vector is k =
(2m n~/ L, . . . , 2m. nd/L) with n; being an integer with

)n;~ ~ (L —1)/2. (We denote the space of all such k

by 3C.) The following theorem determines the behavior
of E(k) almost completely, and establishes that the spin-
wave excitation of the present model behaves exactly as
those in the ferromagnetic Heisenberg model with the
exchange interaction J = UA 4.

Theorem III.—Suppose that C&A2tK ~ U ~ C3A2t,
where C3 is a positive finite constant which depends only
on d and R. Then we have

F)UAG(k) ( E.(k) —E(S „)~ F2U& G(k) (3)

for any k E 3C, where G(k) = /, , 4(sin(ki/2)P. The
prefactors are written as F&(A, K, U) = 1 —C4/A-
C5K C6A tK/U and F2(A) = 1 + C7/A, where the
positive finite constants C; (i = 4, . . . , 7) depend only on
d and R. We thus have F~ ——F2 ——1 for A large and K

small.
Sketch of the proof. We now sketch —the basic ideas

of the proofs, leaving details to [7]. We first briefiy
discuss easier parts. The latter half of Theorem II, which
states the instability of the ferromagnetic ground state, is
easily proved by appropriately choosing a trial state with
St t S,„—1, and using the variational argument. The
upper bound in (3) of Theorem III is also easily proved by
the variational argument as in [3].

We move onto the harder parts. The basic strategy is
simple. For each k E 3C, we construct a complete basis
9q of the Ld-electron states with the given wave number

k and St,t = S» —1. For 4 E Sq, we define
(3)

D[4] = h[4, 4] — g ih[4, W]i, (4)
WESk, % XC

where h[4, W] is the matrix element [11]of the Hamil-
tonian (1). It is easily found that [12]

E(k) ~ min D[4] .
4ESk
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Being a very crude bound, (5) may yield physically
significant results only when we chose bases Sk which
"almost diagonalize" the low-energy part of H.

In what follows, we restrict ourselves to the case
with d = 1 in order to simplify the discussion. The
generahzations to higher dimensions turn out to be
straightforward in principle [7]. We first construct a
nonorthogonal but highly localized basis for the single-
electron Hilbert space. For each u E A, we take a state
p~"i = (q ~"~),~A, so that the set (p~"~)„&g spans the lower
band [13], and the set (p("~)„c~ spans the upper band.
The state p~"~ is localized at the reference site u as p~"~ =
1, ly "&l = A ' for lx —ul = 1/2, and y~" = Citk for
lx —ul = 1, where C is a constant. p~"~ is much smaller
for lx —ul ) 1, and decays exponentially in lx —ul.

We denote by p~"& = (g ~"~)„cp the states in the corre-
sponding dual basis. They are related to the basis states

dual state satisfies y~"~ = 1, lp&")l = A ' for lx —ul =
1/2, P~" = —A 2 for lx —ul = 1, and decays exponen-
tially in lx —ul. Note that the basis state y~") is strictly
localized in the flat-band limit tt = 0, while the dual basis
state p~"~ is only moderately localized.

Let us define the creation and annihilation opera-
tors by a„=LcA p„"c, and b„~ = QEA g„"c„~.
They satisfy the standard anticommutation relations
(at, b„,) = B„„b,. By using the inversion formu-

rewrite the Hamiltonian (1) as

1110(k) = [u(k)] ' g e' "a„ib„t@t

should be a good approximation to the elementary spin-
wave excitation, where the constant a(k) will be deter-
mined later. The states

(k) = g e' "a,ib t1Iit,
ikx

xeX

ikxP (k) g e ax(+1/2)tb tb +1tc t
xeL

(9)

h[a 0(k), C 0(k)] = 4U0, 1;o,i (sin (k/2)),

h[@0(k),111~(k)] —u (k) (1 e '
) (t01 + U01 1 1), (11)

h[40(k), % (k)] = u(k)(e '" —1)U0,1;1/2, 1/2 (12)

play crucial roles in instabilization against para-
magnetism.

By using the representation (6), we write down the
dominant parts of matrix elements between these states
as

H= g t„„at b„+
~=T,l

u, vEA

t t
Uu, v;w, z auTavfbw~bz

u, v,w, zEA
(6)

h[4 (k), ~I1 (k)] = U00.00, (13)

where t» = tvu = zx,y&A txypx py ~ and Uu, v;w, z
=(u) (v)

U Qc~ @~" @„"~q~")
q&

'~ It can be shown that the
effective hoppings satisfy t„„=0 for any u C 5 and
v E tl. For u E 5, t„„ is equal to the average of the
single-electron energies in the lower band, which we
assume to be vanishing for simplicity.

Rather than constructing the whole basis Sk, we here
introduce its elements, which play essential roles in

getting the desired lower bounds [14]. Let C1„„be the
state with no electrons, and @t = P„~z a„&4„, be the
ferromagnetic ground sate. The state

h[111 (k), 1110(k)] = [tx(k)] '(1 —e=")(to, + U. ..o, )

From the properties of the basis states p("', px, we
can estimate the coupling constants as U0, 1,0, 1

= UA 4,

U0, 1;1,1 U~ U1,1;0,1 (C& + ~ )U~ U0, 1;1/2, 1/2

U&, aild U0000 = U. Note that U0111 is different
from U1 1.01, reflecting the nonorthogonality of the basis
states. This asymmetry plays the most important role in
our proof. we also note that p01 l

~ ~t
Combining these estimates, we can roughly evaluate

[15] the quantity D[4] for small enough k as

D[4 (k)] = h[4 (k), 4 (k)] —lh[4 (k), 40(k)]l = U —[u(k)] 'k(P + ~C + W-')Ux-' = U/2,

where we wrote p = A2ta/U, and set a(k) = 2k(p + aC + A 2)A 2. Then we have

D[~'0(k)] = h[~'0(k). @0(k)] g lh[~'o(k). ~' (k)]l lh[C'0(k). P(k)]l

= UA G(k) —a(k)k(2P + 3)UA = UA {1—(4P + 6)(P + ~C + A ))G(k),
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where we used G(k) = k2. The right-hand side is the
desired lower bound for E(k) in (3). It becomes strictly
positive if we take P, a, and A sufficiently small. We
stress that the above mentioned asymmetry in the matrix
elements of H played an essential role in making the
right-hand side of (16) positive. If we used, for example,
the Wannier functions as our basis (which would yield
symmetric matrix elements) and followed the present
strategy, this quantity would always be negative. For
other states 4 in 9k, it is easy to show that D[4] ~
U/2. These estimates for D[ery], with the inequality (5),
essentially prove the harder half of Theorem III. The
lower bound in Theorem II has also been proved except
for the sector with k = (0, . . . , 0).

To prove the remainder of Theorem II, we note that
@n(0, . . . , 0) has S„, = S,„,and is nothing but [an SU(2)
rotation of] the ferromagnetic ground state 4t. In order to
get a lower bound for E(S,„—1) in the sector with k =
(0, . . . , 0), we repeat the previous argument but without
including 40. Then we easily find that the excitation
energy in this subspace is bounded from below by U/2.
Finally we remove the upper bound for U (as required in
Theorem III) by noting that E(S „—1) is nonincreasing
in U while E(S „) is independent of U.
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We can formulate an interesting problem in one di-
mension, which is suitable for numerical experiments.
Consider a Hubbard model on the chain with 2L
sites with L electrons (which makes it quarter filled).
The Hamiltonian H = t&g g, , (c;i2 c(; |it2 +
H.c. ) + t2+ gi, (c, (, t2) c(i, ig) + H.c. ) +t

Vg, , (nit + n, t) + Ug, , n;t2tn;tn defines simple
two-band models. The flat-band models are obtained by
setting ti = jtt2 and V = (A —2)t2 with A ) 0, t2 ) 0,
in which case the existence of ferromagnetism is proved
for any U ) 0. We expect the ferromagnetism to survive
for the parameters close to these values. To find out
precise conditions for the occurrence of ferromagnetism
in the above class of models, however, is still wide open
and would be very illuminating.
It is straightforward to extend the present results to
models with site-dependent U.
If the ground state is completely ferromagnetic (as we
expect for sufficiently large U), the lower band is filled,
and the system should be insulating. We expect metallic
ferromagnetism from models with smaller filling factor,
but the problem becomes much more difficult. See [3] for
such results in the flat-band models.
The matrix elements are defined by the unique expansion
Hery = /@cd, h[%', 4]W for (P E 21k.
To see this, fix k E' 3C, and denote the matrix ele-
ments simply as h;, , where i,j E 9k. An eigenvalue E
of the matrix (h;, ) satisfies Ev; = Pih;, v; for any i
Let 8 be such that lv, /vel ( 1 for any j. Then it fol-
lows that IE —heel ( ZJ;ice lhejl, and hence E ) hee

gi,,~e lhe, l. Thus the desired bound holds for the lowest
eigenvalue.
Let P(k) = (P(k))„c~ denote an eigenstate of (2) in the
lower band with the wave number k. A state localized at
u E L is constructed as qr("' = (2n) ' fdke ""(iy(k'. If
we normalized (iy(ki, this would yield the standard Wannier
functions which form orthonormal basis. In our case, we
leave (iy(k) unnormalized but chose it to be less singular
(as a function of k) as much as is possible [7].
Take x E. A and A C A with L —1 sites.
A general element in 9k is constructed as
ZyEL e ry[etx((f1zcA et&))C kg].
In the actual proof, we have to deal with various
summations over lattice sites. It turns out, however, that
relevant quantities exhibit exponential decay, and the
control of summations is not difficult in principle.
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