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Explicit Solutions of the Bethe Ansatz Equations for Bloch Electrons in a Magnetic Field
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For Bloch electrons in a magnetic field, explicit solutions are obtained at the center of the spectrum
for the Bethe ansatz equations of Wiegmann and Zabrodin. When the magnetic flux per plaquette is

1/Q with Q an odd integer, distribution of the roots of the Bethe ansatz equation is uniform except
at two points on the unit circle in the complex plane. For the semiclassical limit Q ~, the wave
function is ~P(x)~' = (2/sin nx), which is critical and unnormalizable. For the golden-mean fiux, the
distribution of roots has exact self-similarity and the distribution function is nowhere differentiable.
The corresponding wave function also shows a clear self-similar structure.

PACS numbers: 72.15.Gd, 03.65.Fd

with W(z) a polynomial of degree Q —1, this difference
equation coincides with the eigenequation of a combina-
tion of generators of the quantum group U~(slz) in the
representation provided by W(z). Thus the zeros, [z&), of
the polynomial 4'(z) must satisfy the Bethe ansatz equa-
tions (BAE) [7]
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+ q
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2 l = 1, . . . , Q —1. (1)

For the zero energy E = 0, they showed that 0'(z) is
given by the so-called continuous q ultraspherical polyno-

( 2. 2)
mial [10]as W(z) =

l
.', I" ( iz)"P„(—iz), wh—ere P„(z)=

(1 —aq ) [11].
In order to understand the properties of the wave

functions at E = 0, the center of the spectrum, we try to
solve the BAE (1) explicitly. It can be shown from the
above definition of the polynomial P„(z)that it satisfies a
difference equation

(1 —qz )P„(qz)+ (q —= )P„(q '-) = 0. (2)

Put z = q-'/', then we get P„(q='1')= 0. So q-'/' are
roots. By iteration, the complete set of roots of the BAE
are given by

z = iq 'I, iq +', m = 1, . . . , (Q —1)/2. (3)

They are all on the unit circle. Let us write the roots as
= e'™and consider the distribution of 0

Consider first the special case P = 1. The roots [z )
distribute uniformly on the unit circle except near z = ~i.
The roots for Q = 21 are shown in Fig. 1. In the semi-
classical limit Q ~ ~, that is, q 1, the distribution
function p(8) = lim& Q68 is smooth (constant) where

58 = 8 +i —8 . Continuous behavior of p(8) is usu-

ally obtained in the exactly solvable models (the Heisen-

berg chain, the Hubbard chain, etc.) in which p(8) is
determined by an integral equation.

The Azbel-Hofstadter-Wannier problem of two-
dimensional Bloch electrons in a magnetic field is an old
problem that often brings new excitement. The equations
of motion can be reduced to one-dimensional ones, which
appear in many different physical contexts, ranging from
the quantum Hall effect [1] to quasiperiodic systems (for
a review, see, for example, Ref. [2]). Its topological
character has been revealed both for periodic boundary
conditions [1] and for systems with edges [3]. The
interplay of two intrinsic periods, the period of the lattice
and that of the magnetic flux, is essential in this problem.
Previously many studies were done for the cases when
the two periods are conunensurable, i.e., the magnetic
flux per plaquette P is rational. But the incommensurate
cases (with an irrational P) are more interesting in that
the spectrum is known to have an extremely rich structure
like the Cantor set and to exhibit multifractal behavior

[2,4]. Another interesting case is the weak field limit:
When the fiux is small, the semiclassical treatment of the
WKB type is justified. Although some properties of the
wave functions are known [5,6], much of the knowledge
we have came from numerical studies for rational fluxes

[2]. In this Letter, we derive several analytical results
for the weak-field limit and for the incommensurate
golden-mean flux, by following the highly innovative
Bethe ansatz approach recently proposed by Wiegmann
and Zabrodin [7] using quantum group techniques.

The Hamiltonian is given by H = p „(c+i „e's-' x
igc „+c „+ie™hc„+H.c.) where c

„
is the anni-

hilation operator for an electron at site (m, n) We.
first assume the flux per plaquette P is rational:
P/Q with coprime odd integers P and Q, and later
take appropriate limits of @. Let us take the diagonal
gauge, 8' „=+ n @(n + m), 8m, n = —n P(n + m) [9].
Then the Schrodinger equation for the one particle state
~'Ir) = g „

i/I „c„)0)is written as i(q'+' + q ') Il'i+i-
i(q' ' + q ')WI i = Equal at the midband point where„=i +"'P +„and q = e' ~ = e'" /0. PWiegmann
and Zabrodin observed [7] that if we write %1 = qr(q')
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FIG. 1. Roots of the Bethe ansatz equation for the special case
P= landg =89.
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When the flux is irrational, the situation is quite
different. Take the flux P = I/r = (+5 —1)/2, where

r is the golden mean. To reach this flux, we consider
a sequence of rational fluxes Pz = Pl, /Q&, where Qk =
F3k+] Pp = F3k, and Fk is a Fibonacci number defined by
Fk+~ = Fk + Fk &, F~ = 1,Fo = 1. In this case, the two

types of roots in Eq. (3) are nested. To gain an insight
into the distribution of roots, it is helpful to consider
the pseudo roots which are defined also by Eq. (3) but
with the range of m modified to rn = —(Q —1)/2, , 0.
In Fig. 2 we show the distributions of the roots (black
points) and pseudo roots (gray points) for several Pk(k =
1,2, 3,4, 5, 6). Here the radius of the unit circle has been
scaled so as to show all the cases at once. These figures
clearly show that there is a branching rule for the true
roots (denoted by A) and pseudo roots (by B) as follows:

A ~ABABA,
A ~ABA,
B ~BABA B,
B BAB. (4)

The initial condition is B3A2B3A2 (cyclic). In the kth

stage of the sequence, the number of clusters of the true
roots A' and A~ are Qq &

—I and Pl, , + I, respectively.
This branching rule gives rise to a self-similar structure
for the distribution p(8) in the limit k ~ ~. To character-
ize the distribution, let us define the generation of a root.
According to the branching rule (4), each true (pseudo)
root branches into a cluster of 3 new true (pseudo) roots,
each of which in a sense has a parent. At the same time,
between these clusters of new pseudo (true) roots, there
is a pair of new-born true (pseudo) roots which have no
parent. We assign the generation number to a root so that
it is 1 when the root does not have a parent; otherwise
it is 1 plus that of its parent. Let us denote the number
of true (pseudo) roots in the kth stage with generation g
by nz(g, k)[na(g, k)](g = I, . . . , k). [Then in the special
case P = I, n~(g, k) = nB(g, k) = Bks.j In the present
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FIG. 2. Roots of the Bethe ansatz equation for the
ratio of the Fibonacci numbers. Pq = Pk/Ql, = 3/5,
13/21, 55/89, 233/377, 987/1597, and 4181/6765 (a) in the
whole complex plane. (b) An enlarged figure. In each case,
the roots are always on the unit circle. We scaled the radii to
show the branching rule clearly.

case, we get a recursion formula by the branching rule as

ng(g, k) = 3nq(g —I, k —1), g = 2, . . . , k, nq(1, k) =
2(Pk ~ + 1). Thus n~(g, k) = 2 & 3' '(PI, , + 1) and

na(g, k) = 2 X 3s '(Pl, s
—1). The above considera-

tions exemplify the difference of the distributions between
the semiclassical limit and the incommensurate case. The
distribution of the roots has a self-similar structure
and the function p(8) is nowhere differentiable in the
incommensurate limit, while that for the semiclassical
limit is smooth. We believe this is characteristic to the
incommensurate case.

Another way to characterize the distribution is to map
to the dual (reciprocal) space. This can be done for
arbitrary P and Q. We lift the 8 to the real axis
periodically. On the real axis, the true and pseudo
roots occupy a lattice of points (J'/2Q)j: integer) with

spacing I/2Q. Thus we perform the Fourier transform

by Sg(p) = g, „e'»Sg(j)where Sg(j) is the so-called
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defining function: SQ(j) = 1 if there is a true root at j/2Q,
otherwise SQ(j) = 0. Then

SQ(p) = —g sQ 8(p —p„),
Q Q

0 ~ p & 2', (5)

where sQ = (Q —1), sQ = (—)"+'[cos(2Pp, )] ' (r = 1,
. . . , Q —1), and p„=2' r/Q. In the semiclassical hmit,
)SQ(p)l~ is well defined and behaves smoothly. On the
other hand, lSQ(p)(2 is not even differentiable in the
incommensurate limit since P ~. Also it can be shown
that the original defining function is given by

&& cos (2njn/Q) / cos (n Pn/Q)]

Next let us consider the wave function. Using the
explicit roots we found above, the wave function at site

j can be written in a compact factorized form

(6)

(Q —1)/2

I I ~ I

m=1

m (2m —j)P4 sin

n'(2m + j —1)p
X sin

2
(7)

It is convenient to shift the site, j = j + jo, by an
amount jo where jo is determined by Pjo = (Q —P)/
2(mod2Q). Then+; =Oat j =2m, —2m+ 1[m =1,
. . . , (Q —1)/2], and the wave function is nonzero
only at j = 1, 3, . . . , 2Q and Q + 1, Q + 3, . . . , 2Q.
Using Eq. (6), the amplitude of the wave function is
calculated as

81m/256 = 0.99402. . . , . . .. So the finite-size correction
factor C(l) converges to unity very rapidly and Eq. (7) is
quite accurate even at small Q. The norm of the wave
function is log Q + const and unnormalizable, which is
characteristic of a critical wave function. In Fig. 3, the
amplitudes of the analytic wave functions, normalized by
the peak height, are shown for several values of Q.

Next let us discuss the case with golden-mean Aux. We
plot the analytic results Eq. (7) in Fig. 4 for a sequence
of rational fluxes converging to 1/r One can easily
recognize the self-similar behavior of the wave function.
Each peak branches into three peaks in the next stage.
Presumably these are the reflection of the self-similar
distribution of the roots, Eq. (4). The multifractal analysis
[2] done numerically gives a smooth f(u) shown in

Fig. 5. This clearly sho~s that this wave function is
multifractal and critical. %e note the striking resemblance
of these wave functions to that of the 1D quasicrysta1
Fibonacci lattice at the center of the spectrum [13]. An
analytical derivation of f(u) is under progress. The latter
was obtained exactly by a different technique and f(a) is
obtained analytically [14].

In conclusion, we have found analytical solutions to the
BAE (1) that describe the Bloch state in a magnetic field
with zero energy. The flux per plaquette is @ = P/Q
with coprime odd integers P and Q. All roots are on
the unit circle, and the defining function for the roots is
explicitly derived.

When P = 1, the roots distribute uniformly for any
odd Q. In the semiclassical limit Q ~, the density
function of roots is smooth. When the flux P are ratios of
the successive Fibonacci numbers which converge to the
golden mean, we found the branching rule for the roots,
which makes the density function p of the roots exactly
self-similar and nowhere differentiable.

We are able to get explicit wave functions too. In
the semiclassical case, a compact expression is derived

First let us present the exact results explicitly for the
special case P = 1. A direct and careful calculation leads
to a very simple result for the amplitude

IP(x)l' = . , (0 & x ~ 1),
2

sin(mx)
' (8)

0.8

up to a constant factor, where p(x) = qr;, x = (2j—
1)/2Q, and the semiclassical limit Q ~ is taken.
Thus the squared amplitude of the wave func-
tion is given by the inverse chord distance in the
semiclassical limit. The recursion relation
lqrj A)2 sin2[m(j —2)/Q]/ sin [n.(j —1)/Q] obtained
from Eq. (7), has played a key role [12]. For a finite Q,
a correction factor appears only near the edges (x = 0
and 1). For example, near the edge x = 0, the finite size
correction is given by lf(xi+i)l = C(I)(2/sin vrx2/~f),
with C(I) = m (I + 1/4) P'k, (1 —1/2k)2, where C(0) =
m/4 = 0.78539. . . , C(1) = 5~/16 = 0.98174. . . , C(2) =
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FIG. 3. Squared amplitudes for the wave functions: the special
cases P = 1 and Q = 5, 21, 89, 377. The wave functions are
normalized by the peak heights.
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FIG. 5. The plot of f(n) for the wave function in the golden-
mean case.

model where the symmetry is known to be higher than
what is naively expected [15,16].
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FIG. 4. Amplitude of the wave functions: for the ratios of
successive Fibonacci numbers: (a) whole region (P = 3/5,
13/21, and 55/89) and (b) enlarged plot of the region near
0.89 (p = Pk/Qk = 3/5, 13/21, 55/89, 233/377, 987/1597, and
4181/6765). The wave function with a larger value of Q is
shaded darker. The wave functions are normalized by the peak
height.

for the critical wave function, which turns out to be not
nortnalizable. The squared amplitude, IP(x)1, is given
by the inverse chord distance, 2/ sin(ex). For the golden-
mean flux, the wave function also has a clear self-similar
branching structure.

Finally we remark that the solutions (3) to the BAE
have a relatively simple structure, and positions of the
roots are not affected by a finite Q correction. These
facts together with the simple form (8) of the amplitude
of the wave functions suggest that the symmetry of the
problem, at least at the center of the spectrum, is higher
than originally expected. It might just be the quantum
group Uq(sl2), though a clear-cut proof is still lacking.
The situation would be similar to the Haldane-Shastry
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