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Model of Fermions with Correlated Hopping (Integrable Cases)
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We present a new model describing strongly correlated electrons on a lattice. The model naturally
describes the nearest-neighbor hopping of electrons and local electron pairs and the interaction between
them. It is an extended Hubbard model exactly solvable in one dimension for some special values of
the coupling constants. The Bethe ansatz equation are obtained and a ground state is discussed.

PACS numbers: 71.28.+d, 75.10.Jm

The discovery of the phenomena of high T, supercon-
ductivity stimulates the construction and investigation of
new integrable models in theoretical condensed matter
physics. The one-dimensional integrable model of fermi-
ons interacting via the interorbital exchange interaction
has been recently proposed by Schlottmann [1]. In [2]
the authors focus attention on the superconducting model
of strongly correlated electrons which is exactly solvable

by the Bethe ansatz in one dimension.
Among models of correlated electrons the Hubbard and

t-J ones play an important role in the study of the mi-
croscopic mechanism for superconductivity in the elec-
tronic subsystems of transition metal oxide compounds.
The crucial step for our present understanding of the one-
dimensional Hubbard model was made by Lieb and Wu

[3] who have solved it exactly using the Bethe ansatz.
The one-dimensional t Jmodel is-integrable for a spe-
cific value of the ratio t/21 = ~1 [4]. This specific point
corresponds to supersymmetric invariance of the model
Hamiltonian [5—7].

In this Letter we propose a new integrable narrow-

band model of strongly correlated electrons. The
model describes the chain of itinerant electrons with the

Hamiltonian that includes the correlated hopping of
electrons between nearest-neighbor sites and the repulsion
(attraction) of two electrons on the same site. The model
also admits existence of local electron pairs, which can
move along chain interacting with itinerant electrons.
Roughly speaking this model can be viewed as a modified
Hubbard model with correlated nearest-neighbor hopping.

The electron states on a lattice are conveniently deter-
mined by the use of the Hubbard operators X,'" which

describe all possible configurations of electrons at given
lattice site i~a) = X ~0)(a = 0, I, [,2), where ~0) denotes
the Fock vacuum, i = 1, 2, . . . , N„N, is the total number
of lattice sites. The Hubbard operators form a basis of
superalgebra SU(2(2). The algebra SU(2~2) has a total of
16 generators, 8 of which are fermionic and bosonic, re-

spectively. The structure of the composition rules is

[Xab Xcd] $ (BbcXad ~ padXcb)
J

the operators A and B, respectively (i.e., e = 1 for the
fermionic operators and e = 0 for the rest); 8 is the
Kronecker symbol. Expression (1) are supplemented with

local constraint

(2)

The Hamiltonian under consideration is chosen in the
form

H = —to X; X.
(ij) 0 ='t,j

g(x"x," + x"x" —x"x," —x"x,")
(ij)

—t, g g x"x,"—t, gx,"x"+ Ugx"
(ij) tr=f, & (ij) I

—I g(x,"+ x,"+ 2x,"), (3)
l

where to, ti, t2, and t3 are the hopping overlap integrals:
U is the interaction energy of two electrons occupying the
same site; p, is a chemical potential; (ij) denotes a nearest-
neighbor pair of lattice sites. The system consists of N,
electrons on the chain with N, sites (N, is assumed to be
even). It is clear that this form of interaction conserves
the individual number M and N, —M of electrons with

spin up and spin down,
According to (3) if to = ti = t2 and t3 = 0 the model

coincides with the well-studied Hubbard model [3,8,9].
Unfortunately, such a complex model is not integrable in

general for arbitrary parameters of interactions and we
consider the special cases of integrability of the model

only.
First of all we calculate the two-electron scattering

matrix which satisfies the Yang-Baxter equations. Let us

now consider the solution of the problem for the chain
which contains two electrons. The general state can be
written as

~W), , = g [P, , (ni, n2)X„,' X„,'
nl, n2=1

+ B„,„,y(ni) (8,|B,i —B,i6,t)x„,] [0),

where [,] denotes a graded conunutator, [A, B] = AB—
(—1)""BA, here e, and eb are Grassmann parities of where o-l and cr2 are the spins of the electrons.

(4)
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The p, , (n&, n2) and q (n~) amplitudes in (4) satisfy the Schrodinger equation H~'qt), , = E[W), , which can be
rewritten in the following form:

—t~(B,tB,t
—(B,tB,t)[P, ,(n + 1, n) + P, , (n —l, n) + P, , (n, n + 1) +

, (n, n —1)] + Uqr(n) —t3[p(n + 1) + qr(n —1)) = Ep(n), (5)

forn~ =n2~ 1,

tp[f, , (n ~ 2, n) + P, , (n ~ 1, n ~ 1)] —t~(B,tB,~
—B,tB,t)[p(n) + rp(n ~ 1)] = EP, , (n + 1, n), (6)

for n~ «n2 ~ 1 and n) «
—tp[p, , (n& + 1, n2) + p, , (n&

—l, n2) + f, , (n~, n2 + 1) + tp, ,(n&, n2 —1)] = Ep, , (n&, n2) . (7)

where Q = (Ql, Q2) and P = (Pl, P2) are the two per-
mutations of the integers 1 and 2; x~ and x2 are the coor-
dinates of the particles. The energy which corresponds to
this state equals to

E = 2tp(c—os k~ + cos k2) 2p, . (9)
According to (7) if the interelectron distance exceeds
lattice constant the electrons do not interact and the
components of the tensor Ao ~tr2(Q, P) may be arbitrary.
From Eq. (6) the solution for the qr(n) amplitude in
terms of the f, ,(n, n) amplitude (its singlet part) can
be written as follows:

p(n) = tp/(2t~) [Ptt(n, n) —Pit(n, n)]. (10)
Substituting this solution into (5) and taking into account
the notation of the rP, ,(n~, n2) amplitude in form (8) we
obtain the solution for the two-particle scattering matrix,
denoted as the S matrix. Unfortunately, the S matrix
satisfies the Yang-Baxter equation for special values of
the interaction strengths only. We write the two-particle
scattering matrix for these special cases

8(k() —v9(kz) ~ iP~2

8(kg) —8(k2) ~ i
Si2 =

where t~ = tp/2; t2tp = t~, for case (a) B(k) =
2 tan(k/2)

if tq = tp/2, U = tp —and for case (b) 8(k) =
2 cot(k/2)
1

if t3 = tp/2, U = tp', P;, is the spin permutation opera-
tor. Later we shall use the upper and lower signs for cases
(a) and (b), respectively.

The S matrix is similar to that of the t-J model but
differs in the signs in Eq. (11). It means the S matrix (11)
is determined by a repulsive interaction between particles.

The periodic boundary conditions imposed on the Bethe
function can be expressed in terms of the T, matrix of the

According to Eqs. (5) and (6) the electrons forming a
triplet state are not scattered while they are scattered if
their spins form a singlet state. The solution for the am-
plitude P, ,(n~, n2) can be sought as linear combinations
of two waves with wave numbers kq and k2.

(xl x2) QA, ,(Q, P) exp[t(kp~xg] + kp2xg2)],
P

(8, —i/2l
I 8j + i/2~

(13)

—8, +i/2
—8, —i/2

~ — A —
Ap + i

( A~ —
Ap

—t
(14)

The energy and the magnetization of the system in the
state corresponding to the sets of solutions {8,} and

{A }are
N,

E=+2N, + g 1

+ 1/4
HMz pN (15)

N,
M = ——M

2
(16)

where H is an external magnetic field.
We shall here briefly summarize the results of the exact

solution in one dimension; the details are deferred to a
separate publication [10].

The structure of the solutions of the Bethe ansatz equa-
tions is similar to the one for the model of fermion gas
with a repulsive delta-function interaction [11]. Asymp-
totical solutions of Eqs. (13) and (14) within the limit
N, ~, are in complex plane and form strings

AJ = A" + i(n + 1 —2j)/2 + O(exp( —BN, ));

j =1,2, . . . , n; 6 &0, (17)

which are characterized by a common real abscissa A"

and the string length n In the therm. odynamic limit (with
N, /N„M/N, fixed and N, ~) the sets of solutions

{8,} and {A } have real solutions for the ground state
of the model. Complex spin rapidities (17) correspond

model considered

T = Sjj ~1Sjj+2 ' ' SjN, Sj ]Sj2Sjj ]. — (12)

The diagonalization of the Tj matrix is achieved by
purely algebraic procedure based on the algebra of the
monodromy matrix. The eigenvalues of the T, matrix
coincide with those of the Hamiltonian (3).

The Bethe ansatz equations are written in terms of the
rapidities 8, = 8(k, ) and A
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m, = M/N, = —' —g n dAa„(A).
n=l

(19)

We introduce thermodynamic energies K(6) and
e„(A) defined as K(8) = T In[ph(8)/p(8)] and e„(A) =
T In[a.i,„(A)/cr„(A)] which satisfy the following integral
equations:

to excited states. We define distribution functions p(6)
and (T„(A) for particles and the hole functions pI, (6)
and o.z„(A) for rapidities 8, and A". The lowest-energy
state is obtained by filling all states with ~6~ & Q and
fA"

(
& 8„ in case (a) and Q & f6[ & ~ and JA"

J
& 8„

in case (b); i.e., it corresponds to filled Dirac seas [the
Dirac seas consist of all momenta and strings for which
p(B) 4 0 and o.„(A) + 0]. The cut-off parameters (B„
and Q) are determined by the total density of electrons
and magnetization per lattice site

a, = N, /N, = f dip(((),

filled band at H = 0

~1 2jL,

pp(&) = a((&) + a3(~) ~

o.p(A) = ai(A). (29)

According to Eq. (15) at 0 & n, & 1 in case (a) the
ground state of the model becomes ferromagnetic with
density of the magnetization m, = n, /2 and the density
of the ground state energy

2 Q
(30)~+14

where Q =
2 tan '(m. n, /2). If H = 0 and n, = 1 the

energy density of the system is zero. This result takes
place in the t Jmod-el [4]. For case (b) in the limit T 0
the excitation energies satisfy the following equations:

K(8) = —2 —p, + 2ma((6) —H/2

+ TR + ln[n( —K(8))], (20)

K(6) = ~ 2 —p, ~ 2m'ai(8) + Ts + 1n[n(ei(8))] Bl

+ d Aa, (a —A)e((A),
—Bl

(31)

e((A) = Ts + ln[n(—e2(A))/n( —K(A))], (21)
8|(A) +

Bl

Bl
dA'a2(A —A')e|(A') =

n 1
a„(A) =

2m Az + (n/2)'
' (24)

T is the temperature; and, finally, the symbol a + f(A)
denotes the convolution

a a f(A) = j dpa(A —p)f(p) (25)

At equilibrium the free energy density of the system can
be expressed in terms of the quasienergies:

F = eo + T d6po 6 1n n It: 6

e„(A) = Ts + In[n(e—„+i(A))n(e„ i(A))], for n & 1,

(22)
where

1
s(A)=, R(A) = ai * s(A),

2cosh mA

Q

H + a( + K(A) — d@a((A —8)K(6). (32)
—Q

Note that in contrast to the t-J model the nonmagnetic
ground state of the system is characterized by real so-
lutions of charge rapidities. The ground state configura-
tion corresponds to the filling of all states with K(8) & 0
and e|(A) & 0. In the absence of an external magnetic
field the magnetization vanishes and Bi = ~ so we obtain
the following integral equation for the charge distribution
function p(8) which is analogous to (20)

pa(a) + p(a) —R * p(a) = a|(@). (33)

This integral equation has analytical solution only in the
cases when the band is almost full or almost empty.
If the band is almost empty then Q is very large and

Eq. (33) may be solved by using the standard Wiener-
Hopf technique. The kernel of the integral equation (33)
is factorized into the form

1 + exp( —[pi~) = G+(cu)G (co),

where

+ T dacro A 1n n a) A (26)

) t hJ j27T

G {cu) = G+(—co) = v2n.
2m. e ) 1 lM— +—

2 2m

where n(e) = [1 + exp(e/T)] ' is the Fermi distribution
function; eo is the density of the ground state energy and

pp(8) and o p(A) are the distribution functions for the fully

(35)
G (cu) and G+(—cu) are functions that are analytical in
the upper and lower Fourier-space balf-planes; I (x) is the

gamma function.
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After some manipulations we obtain the expression for
the density of electrons as function of Q for the almost

empty band

~2 dc'
n, = 2 sin(cu/2)G+(ice) exp( —coQ)

77 p M

where

+2 ds+ tan(cu/2)G+(ice) exp( —2' Q)f(ice),
vr p co

(36)
0

0

f(~) =—G+(~)
1

X I, sin(co'/2) exp( —m'Q)G~(ice') .
p Co —l M

(37)

For large value Q the first term in (36) dominates since
the leading contribution of the last term is of the order
of (I/m Q)2. Equation (33) can be solved numerically for
arbitrary filling n, The re. sults are plotted in Fig. 1.

For sufficiently large magnetic field H ~ H, the ground
state of the system becomes ferromagnetic. It is evident
that according to (31) and (32) the point H, corresponds
to condition Bt = 0; i.e., all spins are parallel. From
Eqs. (31) and (32) for 0 & n, ( 1

+ n, (—Q'+ 1/4) I, (3$)
(Q

Q2+1 4&m' )

where Q =
2 tan '[m. (1 —n, )/2].

In summary, we have constructed a narrow-band model
which generalizes the well-known Hubbard model. The
integrability of the model imposes restrictions on the
dimensionality and the interaction strengths. We have
obtained the Bethe ansatz equations and calculated the
ground state of the system for the integrable cases. This

FIG. 1. The density of electrons as a function of the inter-
action limit B.

model extends the class of integrable lattice models of
strongly correlated electrons.
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