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Large Amplitude Localized Structures in a Relativistic Electron-Positron Ion Plasma
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The nonlinear propagation of circularly polarized electromagnetic waves with relativistically strong
amplitude in an unmagnetized cold electron-positron ion plasma is investigated. The possibility of
finding soliton solutions in such a plasma is explored. It is shown that the presence of a small fraction
of massive ions in the plasma leads to stable localized solutions.

PACS numbers: 52.60.+h, 52.35.—g, 95.30.Qd

Recently, the nonlinear propagation of electromagnetic
waves in electron-positron (e-p) plasmas has attracted
considerable attention [1]. These plasmas, found (for ex-
ample) near the polar caps of pulsars, in the active galactic
nuclei, in the early Universe, will always be created in a
system whose temperature exceeds twice the electron rest
mass (-1.2 MeV) [2]. Propagation of intense short laser
pulses in a plasma can also lead to pair production re-
sulting in a three-component electron-positron-ion (e p i)--
plasma [3]. In fact such three-component plasmas have
been seen in laboratory experiments [4,5] intending to use
positrons as probes to study transport in tokamaks. In ad-

dition to several other applications (like the pulsar magne-
tosphere modeling [6]), an investigation of the e p/e p-i--
plasmas is likely to further our understanding of the early
Universe [7,8], in particular, of the MeV epoch in the evo-
lution of the Universe; it may, indeed, be possible that a
deeper insight into the behavior of an interacting plasma
Iluid in this era may provide valuable clues to its later
evolution. A stable localized solution with density excess
may, coupled with gravity, create templates for confining
matter and creating inhomogeneities necessary to under-

stand the observed structure of the visible Universe.
The importance of the three-component admixture

plasma has led to several theoretical investigations.
Rizzato [9] studied the localization of weakly nonlinear
circularly polarized electromagnetic (CPEM) waves in a
cold plasma made up of electrons, positrons, and ions. In
Ref. [10] the propagation of intense electromagnetic ra-

diation in an admixture of unmagnetized three-component
plasma is investigated analytically, and it is found that
such a plasma may be localized with the generation of
a humped ambipolar electrostatic potential, and that this

potential could be used to accelerate charged particles. It
is also noted in [10]that the procedure of series expansion
is not valid for the case when o. « 1, where n is the ratio
of the unperturbed ion to electron densities.

In this paper we abandon the small amplitude approxi-
mation, and study the nonlinear propagation of ultrarela-
tivistic intense electromagnetic (EM) waves in a plasma

of unmagnetized electrons, positrons, and massive ions,
we aim to find localized stable structures sustained by this

plasma.
The equilibrium state of the three-component system

is characterized by an overall charge neutrality pip

no + No;, where no, no, and No; are the unperturbed
number densities of the electrons, positrons, and ions,
respectively. Because of their relatively large inertia, the
ions do not respond to the dynamics under consideration
and just provide a neutralizing background.

To describe the propagation of electromagnetic waves
in such a plasma, we start with Maxwell equations
expressed in terms of the vector (A), and the scalar (tt )
potentials:

82A 8—bA + —V@ + [n v —(1 —u)n+v+] = 0
Bt2 Bt

and

b, P = [n —(1 —u)n+ —u]. (2)

The system is closed by invoking the hydrodynamic
equations consisting of the equation of motion

BP ~ 2-1/2
+ V 1+ (P-) = ~ ~ V@,

Bt c3t
(3)

and the continuity equation,

+ V(n-v-) = 0,
Bt

for each of the mobile components. Equations (1)—
(4), written in the gauge V A = 0, are dimensionless
with the following normalizations: The time and space
variables are measured in units of the electron plasma

frequency co,[= (4mno e2/m, ) . ), and the collisionless
skin depth c/ ctohe vector and scalar potentials are

normalized to m, c2/e, the relativistic momentum P to

m, c, and n and n+ to their respective equilibrium

densities no and no+. The coefficient u = No; jno is the

ratio of ion equilibrium density to electron equilibrium
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Bn — 8+ —n
BE Bz

P,—

1+ IAI'+ (P;-)'
'"

where Eq. (7) has been used to eliminate Pi
It is now convenient to introduce new variables, g =

vgt, and r = t, where vg = kp/cup is the group ve-
locity of the electromagnetic wave packet, and

v, B/Bg» B/Br. The wave frequency cup satisfies the
dispersion relation cup = kp + (2 —a), implying vg ~ 1

for a transparent plasma for which cup » 1 (cup » td in
the dimensional form). Equations (8) and (9) are easily
integrated to obtain P, = [1 + IAI —(1 +. p) ]/2(1 ~
q), and n = [0.5 + (1 + IAI )/2(1 p)2) in terms of
A and p. These expressions, along with Eqs. (5) and (6)
[5 = B2/Bz2] help us to convert Maxwell Eqs. (1) and

(2) into the form

BA (2 —a) BzA
2l App + +A

Br tvp BP (1 —P )

X [a —(2 —a)P] = 0, (10)

B'y 1 1+ IAI'

(1+ @)'
(1 + a)(1 + IAI )

(1 —y)'

density. In terms of P, the dimensionless quiver velocity
is given by

P-
(5)

[1 + (P=)']
For the one-dimensional propagation (B/Bz + 0, B/B~ =
0 = B/By) of a CPEM wave with a mean frequency cop

and a mean wave number kp along the z axis, the vector
potential can be represented as

A = 2(x + iy)A(z, t) exp(ikpz —icupt) + c.c. (6)

and can be readily shown [through Eq. (3)] to be propor-
tional to the transverse momentum Pi,

Pi =+A. (7)
Notice that A(z, t) is a slowly varying function of z and t
The longitudinal motion of plasma is determined by

BP; B -
2 2-i/2 B+ —1+ IAI + (P;) = +. , (8)

the z components of the equations of motion, and the
continuity equations rewritten as

where cup» (1 + IAI )'/2 (placing an upper limit on the
allowed wave amplitude) has been assumed.

Equations (10) and (11) constitute a closed set de-

scribing the nonlinear propagation of powerful CPEM
waves of arbitrary [as long as IAI & cup] amplitude in
an unmagnetized, transparent cold electron-positron-ion
plasma. It was shown in Ref. [11] that a pure electron-
positron plasma (a = 0) cannot sustain an electrostatic
filed P. As a result the CPEM waves cannot be local-
ized in a pure e-p plasma. An investigation of Eq. (11)
[12] for a fixed IAI, however, reveals that it is possible to
create wake fields by a coherent, short electromagnetic
wave packet moving in unmagnetized three-component
plasmas.

In this paper, we seek a localized solution of the system
of Eqs. (10) and (11). We are interested in the case of
small but nonzero a so that we can have a finite P.
If the characteristic length (L) of the wave satisfies the
condition L » (1 + IAI ) '/2, then from (ll) it follows
that

IAI'

a (1+ IAI )
explicitly displaying that P is proportional to a, i.e.,

P « 1 for a « 1.
Substituting (12) into (10) and neglecting terms of P3

and higher orders, we obtain

BA 2-aB2A, (
2icup + z 2+PA 1— =0,

(1+ IAI') ~

(12)

A = A(g) exp .r" t.

2Mp
(14)

reduces Eq. (13) to
2Ad =0

dn2 (1 + A2)

with ri = [cupP/(2 —a)'/2]g, and 0 = A/P. Invoking
the boundary conditions appropriate to a localized so-
lution, i.e., A = 0 = dA/dry as Iril ~ ca, Eq. (15) can
be readily integrated and allows solitonlike solutions for
Q & 1. There are several ways in which the exact im-
plicit solution of Eq. (15) can be displayed. The most
revealing perhaps is the form

—Q2A+A 1— (15)

(13)
where p = 0.5a j(2 —a) « 1. For stationary soli-
tons, the ansatz (A is a constant corresponding to a non-
linear frequency shift)

cos [(1 —0 )(1+A)] 1 D(1+A) + [1 —(1 —0 )(1+A)]
(1 —0 ) 2& Q(1 + A2) —[1 —(1 —02)(1 + A2)]

(16)

For all values of 02, Eq. (16) can be satisfied at lril = 0 if (1 —0 )[1 + A(0) ] = 1 leading to A (0) —= A
0 /1 —0, where the amplitude A is the maximum value A can attain. Clearly A ~ 0 as 0 ~ 0 and A becomes
large as 0 1. Remembering that A is exactly equal to the particle momentum measured in m, c, large A corresponds
to a highly relativistic plasma, the principal regime of interest for this paper.
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Let us begin the analysis of Eq. (16) by determining the
asymptotic behavior of A. As long as 0 is not extremely
close to unity, it is only the second term which can
provide the balance as [i1~ ~. Thus for sufficientl
large [g), Eq. (16) leads to the exponentially decaying
solution (for all 0)

A„„=0 sech'(g(. (17)
Having demonstrated that we have indeed found localized
solutions for all 0, we shall now derive approximate
formulas to describe the main (not the asymptotic) part of
the soliton. In the two limiting cases of interest, 0 0
(nonrelativistic) and 0 1 (highly relativistic), the right-
hand side is dominated by the second and the first terms,
respectively. Naturally in the nonrelativistic limit, the
asymptotic shape (17), which is the usual soliton solution
of the nonlinear Schrodinger equation pertains for all [g [.

The highly relativistic large amplitude wave (II
1, A » 1) is new and considerably more interesting.
Barring the exponentially decaying tail, the main body of
the soliton is well approximated by

A = A eos(g/A ) (18)
and will be termed a "cosine" soliton. The general shape
of the large amplitude soliton is displayed in Fig. 1 where
the amplitude A is plotted as a function of g. The
exact solution is barely distinguishable from (18) in the
nonasymptotic region. Equation (18) also predicts that
for A & 1, the soliton width L is linearly proportional
to A

The total plasma density variation associated with the
soliton,

BN = Bn+ + Bn = A2, (19)
is large for A2 && 1; the solitons with ultrarelativistic
amplitudes create large concentrations of plasma density.

The stability of the soliton solution can be investigated
using the well-known stability criterion of Vakhitov and

Kolokolov [13]. According to this criterion the soliton is
stable if

(20)

3

FIG. 1. A typical large amplitude structure, A versus
Barring the exponentially decaying tail ((~[ & 10), the rest of
the soliton is very well approximated by the "cosine" formula
of Eq. (18).

where I represents the "number of photons":

I = dqA . 21

From a direct integration of the defining equations, one
finds

I =A (1+A ) + —(I+A ) arccos
2 (i +A

(22)

BA 2 1
2icuo + AgA + P A 1— = 0 (23)

Bv' (1+ [AJ')

which, with the substitution (14), yields

BA l BA l+ — —A A+A l- = 0 (24)
ar r ar (1+A)

for the cylindrically symmetric configuration.
We solve this nonlinear eigenvalue problem numeri-

cally for the ground state solution [13] [(dA/dr), =o = 0,
A(~) = 0]. However, for the ultrarelativistic case, for the

region where A„~ A && 1, the solution of Eq. (24) is

simply the zeroth-order Bessel function:

A = A Jo(kr), (25)

where k = (1 —fl )'~ . In the asymptotic region, the

solution must decay, and Eq. (24) is solved by the

modified Bessel function,

l
,]2 exp( —Qr), (26)

(0 r)'
revealing the characteristic exponential decay. The nu-

merical solution of Eq. (25) (solid line) along with the

analytical expression (26) (dashed line) is displayed in

Fig. 2. In this example the eigenvalue A2 = 0.95271

A —Z, (nr)—

and it is trivial to see that al /a 0
(al/aA')aA~/aQ' = (I —fI') 'al/aA' & 0, prov-

ing the stability of the one-dimensional soliton for all Q.
We conclude that it is possible to obtain a large am-

plitude soliton solution in an unmagnetized cold plasma
consisting of electrons, positrons, and a small fraction of
massive ions. We assert the fact that the presence of even
a very small fraction of massive ions is crucial to the
soliton formation; a pure electron-positron plasma can-
not sustain this disturbance. The electromagnetic wave
pulse with arbitrary amplitude, under certain given condi-
tions, will always be spread out in a pure electron-positron
plasma [11]. The addition of a small fraction of massive
ions, stops the pulses from spreading out; the solitons will

emerge from the modulational interactions of these pulses.
We note in passing that such soliton potentials propagat-
ing with vg = c, could readily cause acceleration of reso-
nant particles [14].

We now generalize our results by allowing a transverse
variation of the fields. If we assume that A depends
weakly on the transverse coordinates [A = A(g, x, y, t)],
i.e., (aA/a$) )) V~A, Eq. (13) can be rewritten with an
additional term h&A. Assuming b ~A && coo (a A/a$ ),
Eq. (13) modifies to
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FIG. 3. The nonlinear dispersion relation: the effective eigen-
value A' as a function of A, the amplitude. As A goes to
infinity, 0 approaches unity.

FIG. 2. A comparison of the numerical 2D solution with the
Bessel function approximation [Eq. (25)]. Again there exists
excellent agreement for the bulk of the structure.

[A(0) = A = 8]. One can see that the main part of the
solution is well described by the Bessel solution (26),
the radial analog of the axial "cosine" soliton [Eq. (18)].
Note that, as in the axial case, the soliton width (d —k ')
is an increasing function of the amplitude A & l.

In Fig. 3, we plot the numerically calculated nonlinear
dispersion relation Q2 = Q2(A ). It is clear that for large
amplitude (A » 1) EM waves, Qz approaches unity.

For the large amplitude case, the "stability integral,
"

I = drrA2, (27)
0

will be dominated by contributions from the region in
which the Bessel function solution holds. Simple algebra
leads us to

A2 C2

I = dxxJO(x) & 0, (28)
k2 0

where C2 is a constant of order unity. From (28), and
from the condition BA„/BQ & 0 (see Fig. 3) we get that
a1/aQ' & 0. This proof is clearly not formal, but we
believe that it is quite adequate for the large amplitude
solitons. Using detailed computer simulations, we found
that the stability criterion 81/BQ2 & 0 is satisfied for
arbitrary amplitude soliton solutions.

The stability of the localized structures in the electron-
positron-ion plasmas distinguishes them fundamentally
from the inherently unstable solitonic solutions obtained
for pure e-p plasmas. Since unstable nonlinear solutions
are, generally, not accessible, it would seem that the

stable e-p-i solitons are more likely to lead to observable

physical consequences.
In conclusion, we have shown that in electron positron

plasmas with a small fraction of ions, it is possible
to have localized stable structures with relativistically
strong amplitudes of EM radiation and with large density
bunching. Astrophysical objects, like radio galaxies,
quasars or radio pulsars could radiate ultrarelativistic EM
waves, which, in the ever present e-p-i plasmas in their
vicinity may lead to the formation of stable solitons.
As emphasized earlier, it is these stable solutions which
should be preferentially used to explain, for example, the
"micropulsations" in pulsar radiation [15].

We also believe that these stable localized structures
as sources of large density inhomogeneities may provide
templates for structure formation in the early Universe.
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