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Defects and Spacelike Properties of Delayed Dynamical Systems
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In a laser with delayed feedback operating in an oscillatory regime, phase defects appear for delays
longer than the oscillation period. These defects are visualized by rearranging the data in a two-
dimensional representation. Two distinct disordered phases are observed, one of weak turbulence
characterized by phase fluctuations, and one of highly developed turbulence characterized by a constant
density of defects. The transition between the two regimes is analyzed by studying the dependence
of the defect lifetime on the delay. The experimental findings are modeled via a generalized Landau
equation which includes a delayed coupling.

PACS numbers: 42.50.Lc, 05.45.+b

Thus far, most of the interest in delayed dynamical
systems (DDS) has been restricted to models of the type

x = —yx + F(x(r —r)), (1)
where F is a nonlinear function and r the delay time.
For zero delay, Eq. (1) describes the evolution of a single
degree of freedom. Both the Mackey-Glass equation [1],
modeling the formation of blood cells, and the Ikeda
equation [2], accounting for the evolution of a nonlinear
optical resonator, belong to this class. The fact that a
DDS has an infinite-dimensional phase space suggests
that it may be assimilated to a spatially extended system
(SES).Indeed, a close analogy between the two classes of
systems is discovered by formally decomposing the time
variable r of a DDS into a continuous spacelike variable
rr (0 ~ o. ~ r) and a discrete timelike variable n [3],

t=o. +n7. (2)
Accordingly, the long-range coupling associated with the
delayed feedback can be seen as a local interaction from
one to the next delay unit. As a consequence, the signal
x(t) arising from a DDS can be rearranged as a 2D pattern
of a 1D SES of length L = 7 on a discrete-time lattice.
The scaling behaviors of the chaotic indicators in the long-
delay limit [4—7] are translated into equivalent properties
of extended systems in the thermodynamic limit L
For instance, while the Lyapunov spectrum of a SES is
size independent, in the case of a DDS it scales as I/r
[4); however, by adopting the time unit defined in Eq. (2),
a size independency is recovered also for the DDS [8].

In the case of a laser with delayed feedback, even for
zero delay the dynamics implies 3 degrees of freedom [9];
thus, for suitable parameter values, the system undergoes
regular or chaotic oscillations. In this Letter, we report
evidence of phase defects in this system, for delays long
with respect to the oscillating period. The defect locali-
zation and their statistical characterization are made pos-
sible by the space-time representation introduced above
[3]. Even though the detailed three-equation model [9) of
the laser with feedback reproduces these findings, we will

show that a simple, Landau-type equation is sufficient to
grasp the crucial aspects of this phenomenon.

The experimental setup has already been described in
Ref. [9]. It consists of a single-mode C02 laser with a
delayed feedback on the losses, realized via an intracavity
electro-optic modulator, driven by a signal proportional
to the output intensity, delayed and amplified by a high
voltage amplifier. The bias B of the amplifier is the
control parameter of the system. The delay line was
specifically designed using fast (2 MHz) and accurate (12
bits) A/D and D/A (analog-to-digital) converters with a
digital control, allowing us to vary r from 0.5 p, s to
131 ms. The signal acquisitions were performed using a
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FIG. 1. (a) Intensity signal within a delay unit (r = 1 ms,
B = 159 V); (b) expanded view of the signal between the
arrows exhibiting a phase jump (solid line) and reference signal
(dashed line) translated from a regular region without noticeable
intensity variations.
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FIG. 2. Space (horizontal)-time (vertical) plots of the experi-
mental signal for 8 = 160 V and r = 0.8 ms [(a), (b) and
of the solutions of (3)] for p, = 0.5, P = 2, and r = 50 [(c),
(d)]. Time increases downward. (a) is a plot of the actual
experimental signal, while (b) is the envelope amplitude after
demodulation of the carrier (800 delay units are reported). The
pattern in (a) corresponds to the boxed region in (b). The
pattern reported in (c) is the 2D representation of Re[x(t)e' "],
where cu = 1.2 is a phase shift introduced to better reveal the
oscillations of the signal (500 delay units are reported). The
corresponding envelope amplitude is shown in (d). In cases
(b) to (d), the horizontal width has been suitably set to a value
slightly larger than r to eliminate the systematic drift of the
main structures. The defects appear as fringe dislocations in
a quasisinusoidal pattern [(a), (c)] or as black regions in the
envelope representation [(b), (d)].

12 bits A/D converter (LeCroy 6810), paced by a 1 MHz
clock synchronized with that of the delay line.

In the case of an instantaneous feedback, the laser under-
goes a direct Hopf transition beyond a critical bias, from a
stationary to an oscillating regime. Further beyond, a Q-
switched regime is found, characterized by an increasing
time separation between the spikes, until the laser switches
off. A qualitatively similar scenario is found in the pres-
ence of a delay longer than the Hopf period; however, in
this latter case, the oscillations are irregular.

The intensity signal is reported in Fig. 1(a) for r =-

1 ms and B = 159 V, close to the Hopf bifurcation value
B, = 138 V. Trains of regular oscillations are interrupted
by localized events, where the phase of the signal sud-
denly changes and the amplitude markedly decreases as
shown in Fig. 1(b) where the phase jump is demon-
strated by the superposition with a more regular portion
of the signal (dashed line). This behavior is reminiscent
of space-time defects in 1D extended systems; see, e.g. ,
Ref. [10]. The space-time representations of Fig. 2 clar-
ify this analogy. The "spatial" length L has been set to
a value slightly larger than v in order to eliminate a slow
systematic drift exhibited by the regions of small ampli-
tude oscillations and thus have the black regions approxi-
mately vertical. Besides the vertical backbone, the dark
regions exhibit also lateral asymmetrical branches whose
fluctuating length is associated with the long time decay
(several r units) of the autocorrelation function discussed
in Ref. [3].

Along the dark regions we find points where the
circulation of the 2D gradient of the phase yields an
integer multiple of 2n. [Fig 2(a)].. These dislocations
correspond to phase singularities which, as in a 10
SES [11], can be understood only by analyzing the 2D
pattern resulting from the space-time representation: In
fact, there are no topological constraints for phase and
amplitude in a 1D space. The above analysis provides
a meaningful interpretation of the m- phase jumps often
recognized in the time plots [see, for instance, Fig. 1(b)].
In such cases, the 2D representation shows perturbed
regions where the extra fringe develops over many fringes
(as in Fig. 2).

In fact, the discrete nature of the time axis (n) prevents
an accurate identification of a defect, and this casts doubts
upon the very existence of singular points characterized
by zero amplitude. However, since the defect cores are
spread over many delay units, it appears possible to
extend the two-dimensional phase function @(o., n) to
noninteger n values and, hence, to position a defect. For
the moment we adopt an even more heuristic point of
view and locate a defect where the oscillation amplitude
is smaller than some preassigned threshold.

By increasing the bias B above the Hopf bifurcation,
two different regimes are encountered: defect mediated-
turbulence (DT), where defectlike structures are observed
over ail times, and phase turbulence (PT), where, after
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By suitably filtering the signal, we demodulate it, so that
we can compute the integrated probability distribution

P(A) that the envelope be smaller than A. The results
for two different B values are reported in Fig. 4(a). A
striking difference is again found in the two regimes: For
B = 200 V the support of the distribution is limited to a
narrow interval, whereas arbitrarily small values of A have
finite probability in the DT regitne (B = 160 V). Indeed,
the small-A behavior of the histogram turns out to be a
power law, P(A) = A" with the exponent v = 2.3.

A theoretical analysis of our experiment can be carried
along guidelines similar to those adopted for a SES. Re-
cent numerical investigations of a 1D SES [11]are based
on the complex Ginzburg-Landau equation (CGL), which
describes a nonlinear extended system in the vicinity of a
Hopf bifurcation. Such an equation reproduces many of
the phenomena also observed in our laser system. For
instance, the CGL generates small amplitude localized
structures which play a relevant role in triggering a tur-

bulent behavior [12]. In our case, in order to account for
the peculiar properties of a DDS which give rise to a phe-
nomenology not completely equivalent to that of a SES
[8], we introduce the following delayed equation:

x = p,x —(1 + iP)~x~ x + (1 + ia)x(t —r), (3)

where x is a complex variable and p„, P, and a are
real parameters. This equation is a delayed version of
the complex Landau equation. It contains the same
local interaction term, accounting for the observed Hopf
bifurcation. At variance with the CGL, Eq. (3) includes
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(b)FIG. 3. (a) Average transient lifetime T of defects for r =
1 ms displaying a transition from an asymptotically ordered
(high B) to a disordered (low B) regime; (b) scaling of T with
the delay r for B = 155 V (full circles) and B = 175 V(open
circles). The solid line is an exponential fit of the data; the
dashed line is a power law with an exponent 0.7.

FIG. 4. (a) Histogram of the amplitude A for r = 0.8 ms,
B = 160 V (full circles), and B = 200 V (open circles); (b)
same as in (a) for Eq. (3) with p, = 1 aud r = 50. Curves
1 to 5 correspond to P =1.7, 1.8, 1.9, 2.5, and 3.2. The two
straight lines correspond to P(A) = const A~.
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a short transient, only limited amplitude fluctuations
accompanied by phase fluctuations are detected. To
characterize the two regimes we investigate the defect
evolution. As the loop is closed, an electronic switch
inserted in the feedback loop provides a trigger signal
to the acquisition electronics. We evaluate the transient
lifetime T of the defects, by performing measurements at
fixed 7- for several B values. Each data point is averaged
over several runs. The results, reported in Fig. 3(a),
clearly show the transition between distinct regimes. The
large error bar close to the transition point is an indication
of the critical enhancement of the fluctuations. Notice
that the largest measured lifetimes are thousands of delay
units.

The next relevant question concerns the persistence
of the two regimes in the thermodynamic limit r ~ pp.

The dependence of T on r, reported in Fig. 3(b), for
two parameter values lying on opposite sides of the
transition, answers the question. An exponential growth
is found for B = 155 V, while the results for B = 175 V
are fitted with a power law T = 7 with e = 0.7. Within
the statistical accuracy, the value of the exponent is
compatible with 0.5, a value that we would expect from a
diffusive motion of the defectlike structures.

Finally, we directly test the validity of the assumption
that the low-amplitude regions are associated with defects.
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a time delayed coupling instead of a spatial coupling.
As a further difference, it depends on three control
parameters, whereas the COL is specified by only two. A
detailed investigation of the parameter space will be given
elsewhere; here we consider the case a = 0.

A phenomenological analysis of Eq. (3) reveals strong
analogies with the experiment. The evidence of phase
defects is shown in Fig. 2(c). Defectlike structures are
seen to interrupt an otherwise periodic pattern in Fig. 2(d).
At variance with the experiment, the amplitude A is
directly accessible in the numerical simulations of the
model; thus, we can accurately trace the probability
distribution P(A). The simulations performed for p, = 1

and r = 50 [Fig. 4(b)] reveal two distinct regimes. For
P ( 1.8, the oscillation amplitude is bounded above a
finite value, while for P ) 1.9, the amplitude can be
arbitrarily small. Moreover, in the latter regime the
various curves are asymptotically parallel to one another.
Under the proviso that a true defect can always be found

by extending x{o., n) to noninteger n values, the above
result can be interpreted as an indication that the 2D
defect profile is almost independent of the parameter
values. The different heights of the various curves are
a measure of the density of defects, which approaches 0
when P is decreased below a critical value. The power-
law dependence of the small amplitude probability, with
an exponent v = 2, is in reasonable agreement with the
experiment.

The small-A behavior of P(A) permits us to assign the
2D profile A = ri' of the amplitude close to a defect (r
being the distance from the core), provided the defects
are isotropic and randomly positioned with respect to the
integer lattice. Indeed, assume a low density of uniformly
distributed defects, with mean separation L, and call r
the radius where the amplitude has recovered an assigned
value A. Let us consider a straight line on the plane. A
defect, the core of which is separated by a distance d from
that line, provides an amplitude below A over a segment
of the line of length I = v'rz —dz. Averaging over all d,
the segment fraction I/L covered by amplitudes below A

scales as r Thus, .the probability P(A) is given by I/L
and it scales as r = A /~. Comparison with the above

results yields y = 1. Releasing the isotropy assumption
does not change this scaling behavior.

In conclusion, we have shown the presence of phase
defects in delayed dynamical systems in the limit of long
delays. As a consequence, it was possible to distinguish
two dynamical regimes. This scenario resembles that
reported for 1D SES [I1]. However, an exhaustive
characterization of such regimes is definitely more access-
ible in a delayed system; indeed, from the numerical point
of view, the discreteness of the "time" variable n allows
faster simulations of DDS's, and from the experimental
point of view, control of the system size is easily achieved

by changing 7, thus permitting an accurate investigation
of the scaling properties.
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