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Smoothness Implies Determinism: A Method to Detect It in Time Series
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(Received 27 May 1993)

Continuity on an embedded phase space is enough to imply determinism in time series. Also, it is
possible to define infinitely many arbitrary vector fields over an attractor. We exploit this arbitrariness
to generate a detector of smoothness and therefore of determinism in time series. We report results of
numerical studies of both flow and map examples and of a chaotic experimental system.

PACS numbers: 05.45.+b

The advent of chaos, which is deterministic, has led
to a new desire among researchers to detect determinism
in time series. One catalyst for this is surely the sim-

ple geometric picture of the phase portrait of a dynatnical
system behaving chaotically, and the possibility of realiz-
ing it from observed scalar time series with simple em-
bedding methods [1,2]. Recently there have been some
new approaches to the problem [3—6] that are more direct
than older efforts based on attempting to estimate data
observables physically meaningful for the context of de-
terminism. These include fractal dimensions, Lyapunov
exponents, and other geometrical and dynamical quanti-
ties. A feature of the method we describe herein, dis-
tinguishing it from previous ones, is the existence of a
theorem guaranteeing determinism if a simple test is met.
Our approach has been presaged by [4] and [6].

It is actually a fact that smoothness in phase space
implies determinism in time series. We describe a test
for detecting that smoothness, and thus determinism. In
addition, we have devised a novel surrogate comparison
test to distinguish smoothness from nonsmooth behavior
for chosen types of randomness. In both cases we can
largely remove ambiguities from dependence on delay
caused by finite numerics. This is done through a unique
theoretical device [Eq. (2)] which exploits smoothness of
the phase portraits to define an infinite class of vector
fields for any system.

The mathematical situation is this: Chaotic behavior is
produced by nonlinear ordinary differential equations and
maps on manifolds. As long as the right hand side of
a system of ordinary differential equations is a smooth
(i.e., locally Lipshitz) function of position, its solutions
are uniquely fixed from any given initial condition,
and nearby points on the phase space behave similarly
under time evolution. These continuity properties thus
imply unique future behavior; that is, smoothness implies
determinism [7].

Maps are slightly different. Here the issue is not one
of uniqueness of solutions; if the map is specified, the nth
iterate is determined, even if the map is not continuous.
But the establishment of smoothness means there actually
is a rule that can be determined for the evolution of points,
that provided by the data on the embedded space.

Our method is simple and easy to implement. Let
an observed time series, v(t): t = 1, . . . , ND, be the
output of a differentiable dynamical system f' on an
m-dimensional manifold M; i.e., f'. M ~ M, where f'
is the tth iterate of f, is the nonlinear dynamics underlying
the data, and v(t) is the measured time history of one
of the coordinates for the orbit in M. When the delays
are introduced an embedding of M into R" typically
results as long as the number of components, d, is
made large enough [2]. Smoothness properties of the
dynamical system are now reproduced in the embedded
image of M in Rd. The delay vector time series,
x(t) = (v(t), v(t + b,), . . . , v(t + (d —1)h)), where 5 is
the delay, and t = 1, . . . , N = No —(d —1)b„ lives in
that image. Its behavior carries the smoothness.

We denote the time-one map, i.e., f ', by F and consider
the following general quantity:

P = P(x) = 'P(x, F (x), . . . , F' "(x)), R&1,

P(x) = g c„F"(x),
r=O

R &1. (2)

F may be an arbitrarily sampled How, or a map;
F (x(t)) = x(t), F'(x(t)) = x(t + 1), etc. The c„are
at our disposal, and we now take them to be constants,
independent of x.

Directional (unit vector) fields for P(x) for dynamical
systems are smooth and depend on the choice of the
c„. To estimate such fields we partition the phase
space by a uniform grid. We call the jth mesh cell
of points, comprised of the x;, i = 1, . . . , n, box j, and
we compute the average of the directional elements, x =
@(x)(( @(x) (( ', over box j,

nj

V, =n,-' xx; .

where F" denotes the bth iterate of F and where 4 is
some smooth function of its R vector arguments into R".
@(x) is a vector field in R"; i.e., the vector P is (merely)
a function of the position x. We take b = 1 here for
simplicity. A simple form for P(x) is

R —1
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FIG. 2. Vector field dependence of computed values of W.
(c„}=: (1,2, 3, —4, —2} (solid curve), {—1, 1} (dashed curve).
Also shown is a comparison with A statistic of [4] (solid
diamonds).

FIG. 1. Directional element fields for d = 2 for Henon map
(delay 4 = 1) and Lorenz system (6 = 4). Data length 1V =
20000, grid size n2 = 30 X 30. (a) Henon: (c„}= {—1, 1}.
(b) Henon: {c„}= (2, —5, 3]. (c) Lorenz: (c„}= {—1, 1}.
(d) Lorenz: (c„}= (2, —5, 3}.

We compute Y, for Lorenz system [x = 10(y —x), y =
28x —y —xz, z = —3z + xy, sampling time At = 0.05
(17 points/cycle)] and Henon map (x' = I —I 4x' + y,
y' = 0.3x) data for illustration (Fig. 1). The vector time
series were computed from the delay coordinate construc-
tion on the x coordinate for each case. We note the choice
{c„}= (—1, 1}produces a directional field whose "arrows"
point to the position of the next iterate. For finely sampled
flows this vector field approximates the flow line tangent
vector field.

A measurement on a phase portrait that is independent
of the choice of vector field when the time series is
deterministic is easily formed from a global average of
a mean local directional element length estimate based on
Eq. (3); e.g., proceeding in the spirit of [4],

(4)W = W-'gn, IIY, II'
J

Practically any function of the llY, ll can serve; Eq. (4) is
just a weighted mean square.

For smooth data, llY, ll
= I for box j sufficiently

small, and 8' = 1 should result. In fact, owing to finite
numerics, W is often a lot less than 1. In particular,
8' depends on embedding parameters; for fixed d, W =
W(b, ). W also depends on the choice of vector field P.
And the "natural" choice [c„}= {—1, I}, implicit in the
methods of Refs. [4,6], does not necessarily produce the
most deterministic looking W(b, ) (Fig. 2). We observe
that corresponding numerical data for the A statistic of
Ref. [4] lie a little below the lower curves. Also, the
poorer performance of the f—1, 1}vector field was not an

TABLE I. Coefficients c, for ten vector fields P„, n =
1, . . . , 10, used in computations of A(A).

4z

44
4s

47
4s
A
4 iO

Cp

—1.0
—3.0

2.0
4.7

—2.0
3.5

—34
1.0
0.9
3.0

Cl

1.0
4.0

—5.0
—3.0

3.0
—2.7
—0.5

2.0
0.8

—2.0

Ca

0.0
—1.0

3.0
—1.7
—40
—1.4
—0.1

3.0
—3.5

0.0

0.0
0.0
0.0
0.0
3.0
0.6
4.0

—4.0
4.0
2.0

C4

0.0
0.0
0.0
0.0
0.0
0.0
0.0

—2.0
—2.2
—3.0

isolated example, but, in fact, was common. Computation
parameters for the study in Fig. 2 were d = 3, No =
20000 and the grid size, set by maximum range of the
data, was n = 40 X 40 & 40. Except where stated, we
use these values henceforth.

Since W = 1 is supposed to hold for any (c„}, the
choice of vector field is arbitrary. This gives us a tool to
deal with the finite numerics problem just noted, for now
we can exploit the very wide range of options available
from Eq. (3). We choose ten vector fields (Table I) and
identify maximum values of 5' for each delay A. We
display the maxima in plots against 5 (Fig. 3). As b, rises
the upper envelope of the W(b, ) descends to a well-defined
minimum, O'M = 1, viz. , 0.9 ~ 8'M ( 1.0. We note here
the need to set a determinism tolerance limit for W~ ——l,
which we have taken to be 0.9. The largest delays in
Fig. 3 correspond to about 180 cycles for the Lorenz
and Rossler systems. We also did the computations
for N~ = 3000, on a coarser grid, n' = 30 ~ 30 X 30,
and for N~ = 500, grid size, n = 20 X 20 x 20. 8'
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FIG. 3. Determinism case studies for three familiar chaotic
systems. Computed W values shown are maxima for each delay
over ten arbitrarily chosen vector fields.

FIG. 4. W(A) plots for comparison test analysis of ribbon
data: solid, given data; coded, randomized surrogate data. For
each 5, W is (a) maximum for data, minimum for surrogate;
(b) minimum for data, maximum for surrogate.

plots were Hatter, but their general features were similar;
WM values out to 6 = 1000 and 5 = 200, respectively,
were all just as high. For the Rossler time series we
used the x-coordinate solution to x = —(y + z), Y

=
x + 0.2y, z = 0.2 + zx —5.7z, sampling time At = 0.2
(30 points/cycle).

But maximum W plots for deterministic data also can
yield estimates somewhat less than WM = 1.0, e.g., 0.7 &
WM & 0.9; we represent this very crudely by writing
WM —1.0. This happened with an experimental time
series known to be chaotic. The upper W plot in
Fig. 4(a) is the same quantity we computed for the studies
in Fig. 3, but now the time series (14 points/cycle)
represents the horizontal displacement of the base of the
magnetostrictive ribbon in the experiment of Ref. [8].
From the figure, WM = 0.85.

Here a simple comparison test can distinguish the given
data as deterministic as opposed to random. We make use
of surrogate time series, which may be specified in any of
a number of ways [9]; and we use again the arbitrariness
in the choice of vector field.

We generated surrogate data from the Fourier trans-
form (periodogram) of the given data by randomizing the
phases and transforming back. We then computed mini-
mum W(b) values as well as maximum for both surrogate
and given data. Organizing the results as shown in Fig. 4,
we easily distinguish the given data from such a random
surrogate. For suppose the data had been some other re-
alization of the surrogate. Panels (a) and (b) would look
exactly alike. This happened when we examined ambient
ocean acoustic sonobuoy data (Fig. 5). Thus the acoustic
plots show little evidence of determinism, while the rib-
bon data show strong evidence of determinism.

In cases like this we should go further, in particular
by testing for additional classes of surrogate, but also by
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FIG. 5. Same as Fig. 4, but for ambient ocean acoustic data.

testing noise reduced versions of the given time series.
We did the latter for the ribbon data, finding WM = 0.91
[10]. Thus we have gained an absolute call for the ribbon
system time series (i.e., WM ——1). We note the absolute
call should be understood as relative to the determinism
tolerance limit mentioned earlier. Obviously, we might
not always be able to accomplish an absolute call, and the
surrogate comparison test can provide a valuable fallback
position for cases where determinism is yet likely.

We have presented a test to detect smoothness in
phase space, which implies determinism in a given time
series, i.e., WM ——1.0. Ambiguities from dependence on
delay due to finite numerics are substantially mitigated
through a novel theoretical device, of the use of many
vector fields. Thus upper envelope values of maximum
W plots now can be sensibly constant out to very high
delay; or, if they fall away, they still level off to well-
defined minima, again out to very high delay. We have
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found stable, high values of 8'M for both short and long
time series. For marginal or negative cases we have
provided a surrogate comparison test which sometimes
can discriminate between smoothness and any chosen
surrogate randomness. We have reported applications to
a variety of examples.
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