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Reduced Dynamics Need Not Be Completely Positive
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The reduced dynamics of a quantum system in contact with a reservoir is generally thought to be
"completely positive"; this is certainly true if product initial conditions are used to define the dynamics.
We show that with correlated initial conditions it need not be so. In this case the dynamics can properly
be defined only on a subset of initial system states; extension, by linearity, to all possible initial states
is trivially possible, but the extension may not be physically realizable and may not even be positive,
let alone completely positive.

PACS numbers: 03.65.Bz, 05.30.—d, 05.40.+j

What can happen, with time, in a quantum dynamical
system? If the system is closed, not much: a unitary
transformation of its density operator, p U p U*. If the
system is open, the possible transformations are thought

[1,2] to be the "completely positive" transformations

p Ap = 5W„PW„*. Here {W„] is a sequence, not
necessarily finite, of linear operators on the system Hilbert
space, restricted only by the condition P„W„*W„=I,
which guarantees that trp does not change.

Much is still forbidden under completely positive trans-
formations. A two-state system relaxes to equilibrium;
suppose that, in the basis of eigenvectors of p'q,
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Of course many different ps~ reduce to a given ps. To
define A without ambiguity one assigns to each ps a
singIe ps~., this is the "initial condition. " The assign-
ment of initial conditions ps ps~ is required to be
linear, in the sense of preserving mixtures —i.e., fps~ +
(1 f) ps2 fpsR& + (1 f) psR2, 0 —f —1—and is

with a and P positive and ~ 1. Write

(a„c„&
Ed. b )

and regard the sequences {a„),{b„),. . . as vectors a, b, . . . .
One finds that P = (a, b), u = (a, a) + (b, b) —1, and

therefore, by the Schwarz inequality, P ~ (a + 1)/2.
The diagonal elements cannot relax much faster than

the off-diagonal elements; if the relaxation is exponential

[u = exp( —t/T~), P = exp( —t/Tq)] then T2 ~ 2T~.
Where does the notion of "complete positivity" come

from? Suppose the system S is in contact with a
"reservoir" R and that S + R is closed. The dynamics
of S + R (psR UpsRU*) is "reduced" to dynamics of
S by a partial trace operation trR .. One uses a product basis
[sr) for S + R and sums over reservoir states r; then

usually taken to be of product form, ps ps pR where

pR = exp( —pHR) /Z is a fixed equilibrium state of R by
itself. With this assignment one can show explicitly that
A is completely positive [2].

The definition of dynamics for S is internally consistent
if psR (t) stays for all time within the set generated by
the assignment ps ps&. Consistency is never enforced.
With product initial conditions, consistency would mean
zero system-reservoir interaction. Instead, one hopes
that psR(t), for a long time, stays "close" to the set
generated by the assignment ps p&&. Product initial
conditions are therefore appropriate to weak coupling. If
S/R coupling is strong, different initial conditions should
be used.

Still the motion of S is thought to be completely posi-
tive. The general argument [1] uses the Heisenberg
picture and the map A*, conjugate to A, that moves ob-
servables of S: tr{(Aps)A) = tr{ps(A*A)}. One intro-

duces an N-state "witness" system W, apart from S + R.
The witness is in fact blind —no interaction with S +
R—and dead —H~ = 0. On the observables of S + 8'
the Heisenberg dynamics must then be the product of
A* for S and the identity for W, As+ = A* Jg. Asg
should be positive —i.e., map positive operators to posi-
tive operators —no matter what the size N of S', and it
turns out that can be true only if A itself is completely
positive.

One may reasonably doubt this argument. It is very

powerful magic: 8' sits apart from S + R and does
absolutely nothing; by doing so, it forces the motion
of S to be completely positive, with dramatic physical
consequences, such as T2 ~ 2Tl for exponential two-state
relaxation. One's doubts are strengthened by calculations
of Skinner and co-workers [3] on strong coupling models
for two-state relaxation; in some cases the relaxation looks
almost exponential, but with T2 ~ 2Ti.

Here we show that complete positivity is an artifact of
product initial conditions. In general, reduced dynamics
need not be completely positive.

Our first result is a bit of bad news. If the assignment
of initial conditions pg ps' is defined for all ps and is
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linear, in the sense of preserving mixtures, then psii must
be of product form, ps pii, where pii is a fixed density
operator on reservoir space.

We outline the proof for the case that S is two state.
First, if ps is pure state (i.e., ps = ls)(sl) then the

psii assigned to it must be a product, psti = ps e pii(s),
where p& may depend on the state s; for if I

s')
is any state in Hs orthogonal to ls), we have
(s'r lpsiil s'r) ~ (s' Ipsl s') = 0, which implies that
psiils'r) = 0. Psii is nonzero only on states lsr), and pii
is defined by (r'Ipiil r) = (sr'Ipsiil sr).

The idea now is to take some pure state ps's, not all
independent, and deduce a contradiction unless the pii's
assigned to them are all the same. A two-state p can be
represented as a point in the sphere x + y + z ~

4
by the identification pii = 1/2 + z, piz = x + iy. Take
four coplanar points on the surface of the sphere, where
the pure state p's lie, say, at (1) z = z, (2) z = —2, (3)
x = 2, and (4) x = —z. Then

ps1+ ps2 ps3 + ps4
2 2

PS1 PR1+ PS2 PR2 PS3 PR3+ PS4 PR4

2 2

Average the latter equation over each of three states of S,
the states onto which psi, ps2, and ps3 project; conclude
that pR1 = pR2 = pR3 = pR4. Now replace ps3 and ps4
by (3') y =

2 and (4') y = —
2 and do the same trick.

All six pure-state ps's are assigned the same pii, and since
the six are not all coplanar this implies, by linearity, that

ps ps pR obtains for all ps.
In other words, the only linear assignment of initial

conditions that works for every ps is the product assign-
ment. In general, when product initial conditions are not
appropriate, not every ps can play the "reduced dynam-
ics" game. This is consistent with recent work by Suarez,
Silbey, and Qppenheim [4], who find that some "slippage"
of initial conditions must occur before the reduced dynam-
ics looks Markovian —that is, before reduced dynamics
describes the evolution of ps sufficiently well.

As an illustration of this result, imagine trying to assign
initial conditions in the case that S/R coupling is strong
but R relaxes to equilibrium much faster than S; i.e.,
initial conditions for constrained equilibrium of R in
contact with nonequilibrium S. In classical mechanics,
the solution to this problem is easily seen to be

p (I',) p (I,I„)= p (I )p „(I,I' )/p (I ),

and any ps will do (with the minor caveat that it must not
put density on phase points I s that are not populated at
equilibrium). Many quantum versions of this assignment
are possible, differing in the ordering of operators; one
that has been used in the recent literature [5] is

eq-1 eq eq eq-1
Ps (PsPs psti + Psii ps Ps)/2. (I)

This assignment has many nice features, but in general it
cannot be positive for all ps. for pure state ps's it is not
of the required form (ps I pii) unless ps~i = ps PR.

Now for our main result: Once one allows correlated
initial conditions, anything becomes possible in reduced
dynamics. Specifically, for a two-state S the following
is true: Given four initial states {ps;},independent [in the
sense of noncoplanar in the (x, y, z) representation] but
otherwise arbitrary, and four final states {ps;},completely
arbitrary, there is a reservoir R, a linear map ps psR—
defined at least on the set of mixtures of {ps;}—and a
unitary operator U on S + R Hilbert space such that

ps trR'(Ups U )

Proof: Let R also be two state; use a product basis
lsr), s = 1 or 2, r = 1 or 2; define four operators in
"reservoir space" by (j Ipii;I k) = (j Ips;I k) (that is, the
matrix of pR; in reservoir states equals the matrix of
ps; in system states). Set psih = ps; pii; and define
Ulsr) = U'Isr) = Irs). Then

(j Itrti(Upstt; U )I k) = g(jl iUps; I pii,. U*lkl)

= g(Ij I ps pa I Ik)
I

t'=
I g(~ I psi I I) 1(j IPRi I k)

= (j Ipihl k) = (j I ps I k).

To repeat: In general, reduced dynamics ps Aps
need not be completely positive. The operator A is
defined, via reduction from unitary S + R dynamics, only
on a subset of all possible ps's. A may be extended—
trivially, by linearity —to the set of all ps, but the
motions ps Aps so defined may not be physically
realizable. The extension may even turn density operators
into operators that are not. Forget complete positivity; A,
extended to all ps, may not even be positive.

Here is an illustration of this point, using the assign-
ment ps psii of Eq. (1). Again, two-state S, two-state
R; suppose the Hamiltonian is diagonal in reservoir states,
H = Hi I Pi + Hz P2', then, in units of time and en-
ergy such that fi = P = 1, we have

Ap =[e ' "p(e '+e ') 'e' "e
+ e I H2tp (e H& +'e HP) 1elH2~e Hg + g]/2

where an asterisk denotes the adjoint of the two terms
written out. The extension of A, from its proper domain
to all ps is got just by plugging any ps into this formula.
Take Hi = o.„H2 = 2o.„t = m/2; one calculates
easily that

&1 Oi t'1
I(0 0)I

=
I( 0 iI

where the value of a [which happens to be
—e sinh 2/2 (1 + cosh1 cosh2)] is irrelevant; what
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matters is that it is not zero, so A, has taken a proper
density matrix and produced one that is not.

Finally, one may ask where the general argument
for complete positivity fails. Recall that the argument
introduces a system W, isolated from S + R and with
trivial dynamics. We know the dynamics of S by
itself, A* in Heisenberg representation. We know the
dynamics of W by itself, the identity Iw in Heisenberg
representation. S and W do not interact. The mistake is
to assert that we then know the dynamics of S + W, that
it must be the product A* Iw.

Select an initial state of W + S, pws. What happens
to it in time? To answer the question —since S is part of
S + R—we need the initial state of W + S + R, pwsp.
Traced over R, this must give pws, pws, traced over W,
specifies ps, the initial state of S by itself; to this ps is
assigned a particular initial state ps' of S + R; and traced
over W, pwsz must yield ps&. In general, there is no
state pws~ which meets all these demands. For example,
if pws is p«e st~t~ pwsR must be of the form pws pR
and therefore ps' of the form ps pz, but since ps may
not be pure state and we may not be using product initial
conditions, it may not be so.

In general, we know the dynamics of W + S only for
product initial states pw ps, then the initial state of

the entire system is pw psR. From this initial state, of
course, W and S evolve on their own, and the presence
of W —as should be the case—has no consequence at all
for S.
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