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Stability of Discrete Solitons and Quasicollapse to Intrinsically Localized Modes
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An analytical stability criterion for discrete solitons is presented.

Its evaluation proves that

discreteness reduces (in comparison with the continuum results) the critical nonlinearity parameter
(which separates stable and unstable regimes). Unstable discrete solitons may “collapse” into the more
stable intrinsically localized states. The theory applies to a discrete nonlinear Schrodinger equation, but

can be generalized to other systems.

PACS numbers: 03.40.Kf, 42.50.Rh, 42.81.Dp, 52.35.Sb

Systems with competition between nonlinearity and dis-
persion are rather well studied, especially in the contin-
uum limit. As a result of a balance between nonlinear
and dispersive effects, specific nonlinear objects, namely
solitary waves, may appear [1,2]. They can be stable (cor-
responding, e.g., to the stable solitons) or unstable. The
latter means that dispersion balances nonlinear steepening
only in the stationary case. Small perturbations around
the solitary wave may break this balance leading to in-
stability and perhaps collapse. The stability of solitary
waves has been studied in many physically different and
important nonlinear problems. For continuous systems a
rather well-developed formalism exists (see, e.g., [3,4]).
The situation is different for discrete systems. Here, in
principle, not so many results were obtained analytically.
For example, in the often used Schrodinger limit, we
only know the case discussed in the pioneering work of
Ablowitz and Ladik [5] where analytical predictions can
be made. However, this integrable form of discretization
does not occur in most physically motivated models, such
as coupled nonlinear atomic strings with onsite or intersite
anharmonic potentials, arrays of coupled optical wave-
guides, proton dynamics in hydrogen-bonded chains, the
Davydov and Holstein models for transport of excitation
energy in biophysical systems, and so on.

Localized modes in discrete nonlinear systems have
been a subject of intensive but mainly numerical inves-
tigations during the past years (see, e.g., [5—16]). Differ-
ent types of localized states were found, and very elegant
and efficient schemes have been developed [15] for cal-
culating whole families of solitary wave solutions. Of

course, a broad discrete solution may be described with
the help of the continuum approximation. However, there
exist other types of discrete modes that definitely will not
obey the continuum limit [6,9]. Some of these solutions
show stable behavior in numerical experiments. It should
be noticed, however, that numerical simulations cannot
prove stability in the strict sense. Thus, analytical criteria
are urgently called for, and it is the primary motivation
of this Letter to develop analytical stability criteria for
discrete solitary waves. For demonstration, we have to
choose a specific model. We consider the spatially one-
dimensional nonintegrable discrete nonlinear Schrodinger
equation with arbitrary power nonlinearity. It is known
that such a system can be used to model, for instance,
the main features of multidimensional equations [17,18].
However, the procedure outlined in this Letter is appli-
cable to more general types of nonlinear equations, e.g.,
discrete Schrodinger equations with quite arbitrary non-
linear potentials V (not necessary power nonlinearities).
Besides being of fundamental interest, stability inves-
tigations [14] have important consequences for the dy-
namical features of nonlinear systems. Recently, the
nonintegrable dynamics of a discrete system was dis-
cussed by introducing a “tunable” nonlinearity [16] into
the integrable nonlinear Schrodinger equation. There has
also been much interest in the formation of very local-
ized self-trapped states, motivated by an important role
that they may play in the nonlinear DNA dynamics [12].
One possible mechanism to obtain narrow large amplitude
standing states is modulational instability and subsequent
energy localization [16]. Energy, initially broadly dis-
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tributed in a nonlinear lattice, will be localized into large
amplitude excitations by inelastic interactions of the small
amplitude solitons [13]. This mechanism evidently de-
pends on the stability properties of steady state solutions.
Wave collapse may also provide an explanation for the
appearance of very localized self-trapped states [16—19]
from an initially wide field distribution. The link between
a wave collapse (blowup) in a nonlinear system with the
instability of stationary states is well known for continu-
ous models [17]. We shall demonstrate that instability of
the stationary states in the discrete system corresponds to
the well-known continuum wave collapse in a modified
form: we call it the quasicollapse to intrinsically local-
ized modes. Of interest is the final state of an unstable
discrete mode, i.e., whether it is an extremely spiky sta-
tionary mode plus “radiation,” or an oscillating localized
mode, or something else. We shall answer this question
by numerical simulations.
For demonstration of the method, let us consider

iU, + Upsy — 2Uy + Uy + (o + DU U, = 0.
(1

This equation, with nonlinear potential V(|U,|?) = (o +
l)lU,,lz”z is of Hamiltonian form and may be writ-
ten as iU, = 9H/9U}, with Hamiltonian H = >, |U, —
Uy 1> = >, U, = const. Here o >0 is a free
parameter, being introduced to cover different applica-
tions. Also P = >, |U,|? is a conserved quantity.

First, we focus on the case of a finite number of coupled
equations with periodic boundary conditions (U_-y =
Uy, where 2N + 1 is the total number of oscillators).
The infinite chain will be treated afterwards. Stationary
standing solutions of Eq. (1) have a nonlinear frequency
shift A, which is introduced via U, = G, exp(iAt). The
shape of G, is determined by

Gn+| - 2Gn + Gn—l - AGn + ((7 + l)lcnlzgcn = 0.
2

One may be tempted to believe that the following proce-
dure is the most promising one: Consider (2) as a non-
linear, algebraic eigenvalue problem for A. Prove the
existence of solutions of Eq. (2) by minimizing H under
the constraint of fixed P. Obvious advantage of this ap-
proach would be a simultaneous proof of stability. Note
that, for fixed P, H is bounded from below because of
H = —max|U,|** P = —P*!. In the case of finite N the
minimum will be attained on some state being evidently
stable (with respect to perturbations with the same value
of P). It should be noted, however, that in this way one
cannot prove that solutions exist for arbitrary (continuous)
A, since A is a Lagrange multiplier to be determined from
the constraint P = const. This difficulty is a consequence
of the absence of scaling invariance here, which, on the
other hand, takes place in the continuum approximation.
A further disadvantage of this approach would be that one
could not obtain unstable stationary states.

That is why we proceed differently. Let us study
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the problem of minimizing W with constraint / = const,
where W and I are defined as W = X, (U, — Un-1)* +
AY, U2 I =3,U"2 Here U, is supposed to be a real
function. Minimizing W for fixed / we obtain U,+ —
2U, + Un_y — AU, + (o + DU =0, where u is
the Lagrange multiplier. The existence of the minimum
follows from the fact that W is bounded from below for
fixed I; e.g., zero is a lower bound. Because of finiteness
of N, the minimum has to be attained on some solultion
U, = F,. By using the scaled amplitude G, = p F),
and A = A the equation for U, can be transformed into
the original equation for G,, i.clz., Eq. 2), if u > 0. If
u <0 weuse G, = (—1)"|u|l>F, and A = A — 4. Tt
should be pointed out that the dependence on A is smooth.
For a finite chain, in principle, the parameter A can be
negative. For an infinite chain the boundary condition
is G, — 0 as |n| — . The main difference to the case
of finite N is that one has to prove that the minimum
of W will be attained by some solution of Eq. (2). This
follows, however, in the strict mathematical sense from
a compactness lemma which ensures the survival of the
constraint / = const. For compactness, it is sufficient
to show Iy :=>._, G2?*2 — 0 uniformly for N — o,
where G, is a test function. From the physical point
of view it is obvious (and it can be proven rigorously)
that the minimization of W implies G, — 0 monotonically
for n — . Thus G2 < |const| X P/n, and the desired
behavior of Iy follows for ¢ > 0. For G, — 0 as
[n| — oo, the basic types of stationary solutions can be
classified in the following way: (I) positive, even parity,
with single maximum on-site; (II) positive, even parity,
with single maximum inter-site. The next interesting
solution types are (I') odd parity (one node) and zero
on-site, (II') odd parity (one node) and zero inter-site, and
so on, when the number of nodes increases. The validity
of this classification has been verified by numerical
calculations based on a shooting method and with the help
of generating functions. In the following, for the reason
of simplicity, we shall concentrate on the behaviors of
types I and IT; we call them ground states since they have
the lowest numbers of nodes.

Linearizing Eq. (1) in the form U, = (G, + f, +
ign)exp(iAt), we get, by decomposing into real and
imaginary parts, the following dynamical system for the
real perturbations f, and g,: f, = H+g8n, & = —H-fn.
These equations can be combined to the second-order
equation

Jo=—HiH_fa, 3
where the matrices H,+ and H_ are defined by H.f, =
—frer +2fn = fam1 T Afn — (o + I)Gﬁa'fn and H_f, =
—fre1 + 2fn = fa-1 + Afn — 2o + (o + I)szy”fn,
respectively. The stability of a stationary solution G, is
determined by the properties of the operators H; and H-.
Let us first consider only perturbations which possess the
same symmetry (parity) as the stationary state G,.

By definition, G, realizes the minimum of W for fixed
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I, and therefore, varying W — w/ near the minimum [in-
troduce G, + s, and define the scalar product (s,r) :=
> snral, we find (s, H_s) = 0, under the additional con-
straint (s, G27*') = 0. Since (s, H-s) =< (s, H+s), we may
conclude that the matrix H, is non-negative. The proof
is rather obvious. Assume H . has a negative eigenvalue.
If the corresponding eigenvector is orthogonal to G27*!
then we have found a contradiction immediately. If not,
we may construct from this eigenvector and G, a new
vector being orthogonal to G2°*! and breaking the non-
negativeness of H_. Note that H;G, = 0. In a similar
way we may prove that the matrix H_ has only one nega-
tive eigenvalue. Assume that two negative eigenvalues of
H_ exist. Using linear combinations of the corresponding
eigenvectors, we may construct a vector r, satisfying the
conditions (r,G***') =0 and (r,H_r) < 0. However,
that is impossible as we demonstrated above. Note that
the existence of one negative eigenvalue is a consequence
of (G,H-G) < 0.

Since the matrix H. is positive semidefinite, the
stability is determined by the definiteness properties of the
operator H_ for vectors being orthogonal to G,. There are
two possibilities. First, consider the case of instability.
Assume that (G,H-'G) > 0 and construct the vector

components Q,, = —(G(;H—"(Lg’)e_m + H~'G,,, where e_ is
the eigenvector of H_ with negative eigenvalue {_. One
may check that (Q,H-Q) < 0 and (Q,G) = 0. Thus,
under the above assumptions the ground state is unstable.

Now we turn to the opposite case. Let (G,HZ'G) <
0. In general, any vector s can be decomposed into
a component s_ parallel to e- and a component s,
perpendicular to e-. We then may write (s,H_-s) =
—|Z-I(s—,s-) + (s.,H_s,). Abbreviating F, = H_'G,
and making use of the requirement (s,G) = 0, one
can derive the relation |{_|(s_,F_)=(s.,H_F)).
By the Sczhwarz inequality we obtain (s;,H-s;) =
|§_|2%. From the assumption (F,H_-F) < 0 we
have (F ,H_-F ) <|{-|(F-,F-). Combining all these
expressions we get the desired result (s,H_s) = O.
From here it is quite easy to exclude exponentially
unstable modes (for parity-conserving perturbations);
the most direct way to prove stability is to construct
a Lyapunov function. One may check that the func-
tion L =W — ul — W, + ul; (the index s denotes
the stationary values) can be used. The requirements

L(G,) =0, % =0, L(G, + s,) = 0, for arbitrary (small
but finite) s, satisfying (s, G) = 0, are fulfilled.

It should be noticed that for power nonlinearities
the quadratic form Y,G,H-'G, can be written as
—%Z,, G2. Thus the necessary and sufficient stability

criterion (for parity-conserving perturbations) is

9 2
aA%G" = 0.

[For more general potentials V(|U,|?) a sufficient instabil-
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FIG. 1. Stability of solutions of types I and II with respect to
parity-conserving (even) perturbations. The solitary waves of
types I and II are unstable in the hatched regions to the right of
the curves labeled I and II, respectively.

ity criterion is >, G,H_'G, > 0, since we cannot assume
in general a smooth A dependence.]

Quantitative conclusions require one to evaluate P, =
>, G2 as functions of A for different parameter values of
o. The results of such a calculation are summarized in
the stability diagram shown in Fig. 1.

For all points in the (o, A'/?) plane, and for the solitary
solutions of types I and II, we have determined the
stability properties via criterion (4). We get stable and
unstable regimes which are separated in Fig. 1 by the
border lines named I (for type I solutions) and II (for
type II solutions), respectively. The localized modes of
types I or II are unstable to the rights of the curves
marked I or II, respectively, i.e., in the hatched areas.
One can see that the discreteness changes the critical value
(o¢) of o that separates stable and unstable solitons. In
the continuum limit o, = 2. From Fig. 1 one finds that
discrete symmetric ground states can be unstable already
for o = 1.4. Our results are in qualitative agreement with
[18], where the evolutions of sech-type initial distributions
have been studied. There it has been demonstrated first by
numerical experiments that discreteness lowers the critical
value of o, but the drastic down-shift to ., = 1.4 could
not be predicted by these authors. This is one of the new
conclusions from the general criterion (4).

In order to conclude the stability considerations, we
have to comment on parity-nonconserving perturbations.
It can be shown that for ground states of type I the
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eigenvalues of H_ are always positive, and no new
instability region compared to that shown in Fig. 1
appears. On the other hand, when we consider states
of type I, H_ always has negative eigenvalues, tending
to zero for A — O (continuum limit). Thus the states II
are always unstable. By a generalization of the method
presented first in [4] one can derive complementary
variational principles for the growth rates of the unstable
states. It is then possible to quantify the time scales of
the unstable growth.

We also have confirmed the analytic predictions by
numerical simulations. In the following we present the
nonlinear development of a linearly unstable discrete
solitary wave. The numerical code is semi-implicit; the
linear terms are handled by a Crank-Nicholson scheme
[20], supplemented by Dirichlet or periodic boundary con-
ditions. First, this code was used to confirm the analytic
stability prediction (4) numerically. Then, in the unstable
regime, it was run for long times. A typical result of the
initial value problem (1) is depicted in Fig. 2. The case
shown is for N = 100, and the initial distributions RU, =
G, — 001[(G,G)(HZ'G), — (G,HZ'G)G,], U, =
{H;'[RU, — G,]}, for o = 1.85, /A = 0.35 have been
chosen in order to start already with the most unstable
perturbation.

The numerical simulation demonstrates that an unstable
solution shows a collapse tendency. But in contrast to
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FIG. 2. Nonlinear development of an unstable (o = 1.85,
VA = 0.35) discrete solitary wave (thick line) into an intrin-
sically localized two-soliton solution. The latter is oscillating
in the hatched region.
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the continuum result, here the collapse will be stopped,
and we can determine a nonsingular final state. We name
the process quasicollapse, and the final state is a time-
dependent intrinsically localized mode. It corresponds
to an (oscillating) two-soliton state. Note that the case
shown in Fig. 2 is typical; the time developments for other
parameter values are similar. Obviously, this leads into
new insight into the formation of intrinsically localized
modes.

In conclusion, we have presented an exact criterion
for the stability of the ground states of the generalized
discrete nonlinear Schrodinger equation. The method may
be easily applied to other discrete models. By studying,
for a power nonlinearity, the stability of ground states,
information is gained about the quasicollapse in discrete
models. Instability of some ground solutions results via
an explosive-type dynamics into a fast energy localization
through finite-time condensation.
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