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Optical Response of Arrays of Spheres from the Theory of Hypercomplex Variables
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Transformation from the three-dimensional hypercomplex X(x, y, z) frame to another which has
infinite dimensions but has the symmetry properties of an array built in allows the Laplace equation
to be solved in structures for which it is nonseparable. The power and practicality of this technique
is demonstrated on pairs and chains of spheres of arbitrary complex permittivity in a quasiconstant
electric field. New results include strong absorption enhancement at long wavelengths in high density
chains due to structurally induced resonances.
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Solutions of Laplace's equation apply to a wide ar-
ray of physical problems including electrical and thermal
transport phenomena, fiuid fiow, and polarization in an
applied electric or magnetic field. Optical properties can
also be deduced from these solutions if the characteris-
tic features in a multiphase medium are much smaller
in size than wavelength. In this initial presentation of a
new, improved technique for exactly solving the Laplace
equation (LE), we will focus on the novel insights it gives
into the properties of arrays of small (nanoscale) spheres
in a quasiconstant external field. We note, however, that
the technique has broad potential. For instance, new pre-
cision and novel design in larger scale systems including
electrode arrays, devices, and materials become possible.

Exact solutions are available for a limited class of struc-
tures and particle shapes. These can be represented by
coordinate systems which allow the LE to be solved by
separation of variables. There are twelve known systems
in which this can be done [1]. For some of these, such as
touching and separate pairs of spheres, exact results have
only been established quite recently when one or more
of the materials in the system have complex dielectric
constants [2—4]. These results have highlighted the im-

portance of multipolar interactions as particles approach
and touch. Small changes in separation can dramatically
alter optical absorption response as a function of wave-
length. A simple dipole resonance structure for small,
absorbing particles which are isolated changes due to the
proximity of other particles to quite complex absorption
spectra spanning a much broader range of wavelengths.
The sensitivity to fine details of geometry means that
easy to extract and numerically exact results are needed
if we are to understand and model the response of com-
plex arrays.

Earlier works in this field (e.g. , [5—9]), while provid-
ing general insights into the presence of multipolar reso-
nances were limited in scope and usefulness by the inher-
ent diKculties of the mathematical framework in which

they were formulated. The conventional approach is to

start with general partial solutions based on individual
particle shape, since these were known for the LE. The ar-
ray is then accounted for by an extra boundary equation
relating the potential seen by each particle to the multi-
poles induced on all the others [7—9]. This approach was
originally used by Rayleigh [6]. Our approach is simpler
because it uses partial solutions which have the symmetry
of the array. Building in the array properties from the
outset greatly simplifies solution and improves conver-
gence rates, even for a simple pair. Thus this new tech-
nique has much to offer. Ignoring multipole effects has
led to some common misconceptions [10] because data
fitting is often possible using assumptions about shape
distribution or relaxation times.

The powerful technique we present in this paper opens
up new systems to exact study as it can provide accu-
rate results for several nonseparable geometries. A ba-
sic example is used to introduce the approach which is
then applied to the separated sphere pair and the chain
of separated spheres. The pair result has been recently
obtained with correct symmetry built in at the start us-

ing the separable bispherical coordinate system [4]. Our
technique gives the same result more simply. However,
the chain result is new as this is a nonseparable system.
It also represents, we believe, the first practical applica-
tion and new physical insights provided by the theory of
hypercomplex (HC) variables.

We will show how to obtain an exact-integral solution
[11] of the LE in 3D space. This approach is not only
valid for any dielectric constants of the constituents but
we also have results when each particle in an array is it-
self composite (e.g. , a coated sphere). To the best of our
knowledge the latter problem in 3D has never been dis-
cussed in the literature except in the dipole (lowest order)
approximation. It is extremely complex by conventional
methods.

We use the theory of functions of the hypercomplex
variable X which may be regarded as an n-dimensional
generalization of the classical theory of functions of the
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two-dimensional complex variable z. This theory orig-
inally emerged from the integral representation of the
solutions of the LE [11,12]. The particular algebra of the
HC numbers was first introduced by Ketchum [13,14] and
further developed by Snyder [15] into a theory of hyper-
complex analytic functions. We are especially interested
in the solution of the LE in three dimensions. Hence we

reproduce only their results for 3D HC space. We adopt
the symmetry used in Refs. [14,15] rather than that of
Ref. [12] so the HC variable X is defined as

X = xeo+Qe i+zey,
where eo, e i, ei are the 3D subspace of the infinite di-
mensional HC basis e„. This basis was constructed in
such a way that all integral powers of X satisfy the LE
[14], that any function f(X) belongs to the ooD HC space
with basis e„, and for our purposes also means that the
x axis becomes the pair or chain axis. It is known that
the number of linearly independent solutions of degree n
is equal to 2n+ 1. Therefore, the commutative and asso-
ciative algebra for the basis e„ is introduced so that X"
has 2n+ 1 linearly independent components [14]. They
are proportional to the well known spherical harmonics of
degree n. As pointed out in Refs. [14,15], the HC algebra
is isomorphic to the Banach algebra with the basis

. . . ,
i" sin(n u), . . . , i sin(u), 1,i cos(u), . . . ,

i"cos(n u), . . . ,

which is the usual algebra of Fourier series. There-
fore, the expansion of F(X) over the basis

1. . . e „,. . . , e ~, eo, ey, . . . , e„, . . . is just the Fourier se-
ries of the function

F(x + i cos(u) y + i sin(u) z)

= ) i"[cos(nu) f„(x,y, z) + sin(nu) f „(x,y, z)].
n=O (1)

According to Eq. (1), I" (X) as well as all its f„(x,y, z)

l

components are solutions of the LE.

To the best of our knowledge this formalism has never
been used for obtaining solutions for any particular elec-
trostatic problem, as given mathematically by (all eval-

uated at r =surface)

V C(r)=0,
C,„,(r) = 4;„(r),

e O4;„(r)/On = OC,„,(r)/On.

where n is a normal vector to the given surface. We wil1

first illustrate the power of this formalism using two of
the known rotational coordinate systems which allow us
to separate variables in the LE. We then go further and
apply it to a nonseparable case.

The simplest example of a 3D separable coordinate sys-
tem is a spherical one. Let us obtain the well known
partial solutions of LE in this system in terms of HC
variables. We will use a method which is quite similar
to one widely used in the 2D complex representation of
the usual polar frame. In the complex coordinate system
given by the transformation

the partial solution of the LE can be written as

C(z) = exp(+n~) =—z+".

For the spherical system we can follow the same se-
quences of steps. First, we introduce a "transformation"

A = ln(X).

The function ln(X) as well as other functions used in
this study can be treated as ordinary analytic functions
[14,15). Thus each partial solution of the LE can be writ-
ten as

C p(X) = exp[+nA(X)) —= X+".

The explicit form of Eq. (3) can be obtained by evaluating
the Fourier series of [x+iy cos(u)+iz sin(u)]". The result
is widely known (see [1,12]),

7l

C+(X) = X" = R"P„(cos(8))+2R" ) i P„(cos(8))cosm(P —u),(n+m)! "

I (X) = X " = (1/R")P„ i(cos(8)) + (2/R") ) i ',P„,(cos(8)) cosm(P —u)

n!+ (2/R") ) i C„ i(cos(8)) cosm( P —u),
(n —m)!m=n+1

!
where R, 8, P are the spherical coordinates, P„(cos(8))
are the associated Legendre polynomials, and
C„(cos(8)) are the Gegenbauer polynomials.

From this simple example one can see the difference be-
tween the partial solutions of the LE for the polar frame
in two dimensions and the spherical one in 3D. In the
2D case the z" and z " solutions have the same rota-
tional symmetry while in the 3D case the X" and X

solutions give equivalent rotational symmetry solutions.
To solve the full electrostatic problem (2) we need to
consider the partial solutions with equivalent symmetry
properties. The easiest way to do this is to introduce the
simple shift for the negative powers n ~ n+ 1 from the
very beginning. From now on we will follow this proce-
dure, referring to it as the "n ~ n+ 1" rule, in which the
second partial solution (4b) is multiplied by 1/X.
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Consider now the separable bispherical system. The
transformation is (replacing u and z in the 2D bicylin-
drical system with 0 and X)

(X+al
(X —a)

where a is a pole distance [1]. Therefore, we seek the
solutions in the form

C„+(X) = exp(+nA) —=
1 (X + a)"

X pa X pa "+'

(once again applying the n —+ n+ 1 rule). The "zero"
Fourier term is

frame. In practice we can just replace z by X as before.
The transformation becomes

a (zX l
A = —ln tan~

ir i, a)
where 0 and X are hypercomplex variables.

We proceed exactly as before to establish partial solu-
tions of desired symmetry using the n —+ n + 1 rule for
negative powers of X. Then comes application of bound-
ary conditions and some specific results for a pair and a
chain.

For each system the general solution is the sum or the
integral over the partial solutions, namely,

Cc (r)=,P„(cos(v)),
fr+a]" Pin, out(X) = in, outc, i; (X) (6)

C „+(p, v, P) = /cosh(p) —cos(v)e+~' +"&"

cos m
x P„(cos(v)) (5)

which are also solutions.
We have also solved, quite simply, the generalized

touching sphere problem by this method based on the
transformation 0 = 1/X. Using separation, the general
solution only appeared for the first time just last year [2]
despite many previous attempts.

We now turn to the chain of spheres where our hy-

percomplex technique provides a direct solution, despite
the LE being nonseparable. Applying the results shows
clearly that going from a pair to a chain can have a very
significant impact on the spectral resonance character.
This has not been clearly demonstrated before.

An important new feature must be noted for the chain
(or other extended systems such as a lattice) in the 3D
hypercomplex approach. The surface of the particles
does not have to be defined by one of the coordinates
as is common in 2D conformal methods. Even in 2D
the standard approach breaks down at higher densities
in a chain [16]. The frame here determines the symme-
try properties of the partial solutions. Boundary condi-
tions are imposed on the original surfaces of particles,
but expressed in the new frame variables. Thus we can
take the 2D contours of potential and field arising from a
line of alternating positive and negative charges placed at
x = 2na with n an integer, as the starting point. Rota-
tion about the x axis leads to the desired hypercomplex

where v = z —8i —8z with 8i, 8z the angles of the
point r seen from the poles +a, respectively. If now one
transforms this formula from Cartesian coordinates into
bispherical ones, the final expression will be

4 ii (p„ i ) = y cosh(p) —cos(ij)e+ ' +" "P„(cos(v)).

This is the known exact solution in the bispherical frame
[4]. The other Fourier terms are just combinations of the
expressions

Now we rewrite the boundary conditions (2) using HC
functions. For that purpose we shift where necessary,
X+a —+ X, so as to have one of the particles in the center
of the coordinate system. Then, for spherical particles
the normal derivative is

BF(X) BF(X) BIi (X) BX X BF(X)
Bn BR BX BR R BX

where R is the radial distance. The definition of the
derivatives of the functions of the HC variables are also
given in Ref. [15]. For our purposes we should know only
that they are formally difFerentiable like the functions of
2D complex variables. The system of boundary condi-
tions becomes (both evaluated at R = Ro)

F;„(X) = S.„t(X),
t Pi~ (X) = +out(X)

(7)

Ro is the sphere radius. To solve we first expand the
partial solutions 4+(X) in Eq. (6) over X truncating at
some order, then substitute these expansions into Eqs.
(7), and finally solve the linear matrix equation for the
coefficients o;n+. This procedure is nothing more than
matching coefficients for the Legendre polynomials of the
same order. The last step is to extract the coefficient in

front of the term 1/X in the outer solution to get the
polarizability.

Our technique is applied to the polarizability of a pair
and a chain of NaCl spheres with centers a unit distance
apart. The NaCl pair has been previously discussed [4]
based on a bispherical solution but the chain is new to
the hypercomplex work. The dielectric constant depends
on frequency as t(u) = t + (eo —t )/[1 —(u/urT)
ip(u/uT)), where to = 5.934, t = 2.328, urT = 164
cm i, and p = 0.02. In Fig. 1 each Ro = 0.4; in Fig.
2 each RD = 0.48 and the absorption spectrum is shown
using the imaginary part of polarizability. The strong
convergence improvement for our pair result over conven-
tional (Rayleigh) methods, especially at close approach,
has been already outlined in Ref. [4]. Conventional re-
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FIG. 1, Imaginary part of the infrared polarizability of a
pair and a chain of equal NaC1 spheres, separated by unit
distance and with each Ro ——0.4.

suIts are not even available in that regime for a chain.
We can typically achieve convergence for absorbing par-
ticles in a chain with just 30 terms, when the spacing is
0.01 (so Rp = 0.495) .

For the pair we see in Fig. 1 that higher order mul-

tipolar resonances appear to play a minor role at mod-
erate separations but they are strong at close approach
in Fig. 2. Three features stand out for the chain rela-
tive to the pair on which it is based. (a) The dominant
dipole resonance shifts substantially at both separations
to longer wavelengths and by similar amounts but also
important is that adjacent multipolar resonance peaks
are more widely separated, (b) at close separation only
the leading resonance peak is strongly amplified, and (c)
higher order resonances are damped out in the chain rel-
ative to the pair. Thus changes due to the presence of
additional neighbors can be quite large and strongly en-
hanced absorption is possible at wavelengths where ab-
sorption is weak in a pair. Similar effects are also found
in metallic particles.

There is an important new feature in the chain of
spheres which has not shown up in earlier studies. While
the resonance wavelengths of the low order poles shift
to longer wavelengths in all cases with both additional
neighbors and decreasing particle separation, the spec-
tral weight of these poles commonly falls off or shifts up
slightly. For the chain, in contrast, a substantial increase
occurs at longer wavelengths. One major practical con-
sequence concerns the chain of metal spheres. Our re-
sults show that a very strong enhancement in infrared
absorption can result. Thus the resonance properties of
a chain of spheres is a strong contender to explain the
well known infrared absorption enhancement in some Bne
particle systems.

A new approach to solving the Laplace equation in

complex arrays has been established. The theory of func-
tions of hypercomplex variables developed in Refs. [14,15]
plus use of a frame which builds in translational symme-
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FIG. 2. Same as for Fig. 1 with each Ro ——0.48.

try at the outset are the key features. Numerical calcula-
tion is simple and rapidly convergent. The way is open to
new insights into a number of important physica. prob-
lems and technologies, as we have demonstrated in the
case of the electromagnetic resonance behavior of chains
of spheres.

We are grateful to J. Mahanty and A. Reuben for many
useful discussions and suggestions for this work. MATH-

EMATICA from Wolfram was widely used. The research
was supported by the Australian National University and
an ARC Grant.

[1] P. Moon and D.E. Spencer, Field Theory Handbook

(Springer-Verlag, Berlin, 1988), 2nd ed.

[2] A.V. Paley, A.V. Radchik, and G.B. Smith, J. Appl.
Phys. 73, 3446 (1993).

[3] R.D. Stoy, J. Appl. Phys. 65, 2611 (1989).
[4] R. Ruppin, J. Phys. Soc. Jpn. 58, 1446 (1989).
[5] R.C. McPhedran and D.R. McKenzie, Proc. R. Soc. Lon-

don A 45, 359 (1978).
[6] Lord Rayleigh, Philos. Mag. 34, 3730 (1892).
[7] F. Claro, Phys. Rev. B 30, 4989 (1984).
[8] R. Rojas and F. Claro, Phys. Rev. B 34, 3730 (1986).
[9] F. Claro and F. Brouers, Phys. Rev. B 40, 3621 (1989).

[10] G.B. Smith, M.W. Ng, A.J. Reuben, A.V. Radchik, and
S. Dligatch, Proc. SPIE Int. Soc. Opt. Eng, 201'F, 58
(1993).

[11] E.T. Whittaker and G.N. Watson, A Course of Modern

Analysis (Cambridge University Press, Cambrige, 1965),
4th ed,

[12] P. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill, New York, 1953).

[13] P.W. Ketchum, Am. J. Math. 51, 179 (1929).
[14] P.W. Ketchum, Trans. Am. Math. Soc. 30, C 1 (1928).
[15] H.H. Snyder, A Hypercornplex Function Theory Assoc-i

ated with Laplace's Equation (Veb Deutscher Veriag der
Wissenchaften, Berlin, 1968).

[16] A.J. Reuben, A.V. Radchik, and G.B. Smith, J. Phys. A

26, 2020 (1993).


