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Crystal Field Model of the Magnetic Properties of URu2Si2
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We propose a model based on quadrupolar ordering of localized f electrons to explain the 17.5 K
phase transition of VRu2Si2. The tiny staggered magnetic moment observed by neutron scattering is
interpreted as a weak secondary effect associated to the symmetry-breaking perturbation. The model
is able to account for the observed behavior of the linear and nonlinear susceptibilities throughout the
transition. A connection with the quadrupolar Kondo theory is proposed.

PACS numbers: 75.10.Dg, 75.20.Hr, 75.30.Cr

In spite of an intense experimental effort, the rich mag-
netic properties of U intermetallics are far from being
understood theoretically. Because of the complexity of
the Hamiltonian of these systems, including intraion in-
teractions, crystal electric field (CEF) terms, hybridization
processes, and interion interactions of various types, it is
usually difficult to individualize the minimal microscopic
model containing the essential of the physics, even at a
qualitative level. Although the compound URu2Si2 is usu-

ally regarded as a heavy-fermion system, many of its prop-
erties can also be explained in terms of local moments
in a CEF. The electronic specific heat presents a maxi-
mum at -30 K [1,2] which can be interpreted as a CEF
Schottky anomaly. At a comparable temperature scale
T~ —50 K, maxima are observed in the susceptibility, in
the resistivity, and in the thermal expansion [1—5]. Al-
though these features could be attributed to the onset of a
low temperature coherent Kondo-lattice regime below T~,
the connection with the conventional Kondo physics is not
immediate. In fact, the absence of a transverse magnetic
response indicates that the spin-Hip processes necessary for
the Kondo effect are pushed up to high energies. A sim-
pler alternative explanation can be given in terms of CEF.
For instance, the resistivity curve is very similar to the one
observed in some rare-earth compounds, and explained in
terms of scattering of conduction electrons by localized
and dispersive spin fiuctuations [6,7]. Actually, strongly
dispersive excitations, polarized along the c axis, are ob-
served in URu zSiz by neutron scattering, and interpreted as
transitions between two CEF singlets [8,9]. Also, the same
mechanism of scattering by CEF excitons well accounts for
the moderate mass enhancement (y —50 m J/mol K2) ob-
served at low T in URu2Si2 [10]. A further indication of
CEF-like physics is given by the sharp metamagnetic tran-
sitions at about 35—40 T [11,12].

The main problems with the CEF model arise in con-
nection with the 17.5 K phase transition. This transition
has been attributed to a type-I antiferromagnetic ordering
along the c axis, with an ordered moment of -0.03p,~
[1,4,8,9,13]. However, so small a value cannot be rec-

onciled with the large anomalies observed at T& in many
quantities, such as specific heat [1,2], linnear [2,14] and
nonlinear [14] susceptibilities, resistivity, and thermal ex-
pansion [5]. Moreover, the transition is associated with a
big change in magnetic dynamics, since above TN neutron
peaks broaden considerably. Although a singlet-singlet
CEF mode1 describes quite well the spin excitations be-
low TN, it fails to explain the properties of URuzSiz if
an antiferromagnetic order parameter is assumed [9,15].
The most straightforward explanation of this inconsis-
tency is that the fundamental order parameter producing
the anomalies is not the tiny staggered moment, this latter
being only a secondary effect associated to the symmetry-
breaking perturbation. This picture, proposed already in
Ref. [14], is supported by the unconventional temperature
dependence of the staggered moment, p, —(Tjv —T)'
over a very wide temperature range [16,17]. This de-
pendence, which is not order-parameter-like, could not be
reconciled with the strong and conventional temperature
dependence of the gap [9], if the gap opening were con-
trolled by the staggered magnetic molecular field (MF).

In this Letter, we propose an interpretation of the phase
transition based on quadrupolar ordering of localized

f electrons. Multipolar interactions in metallic 4f and

5f systems are not small, usually. They are mediated by
conduction (k) electrons through direct or virtual-mixing
k fprocesses [18-,19]. The various k fmultipole pro--

cesses are the result of an algebraic expansion, and their
amplitude is not small. As a starting point, we deduce the
possible CEF level schemes compatible with the observed
high-T (T & TN) specific heat and susceptibility proper-
ties, interpreted as CEF effects. We stress that we are not
claiming that URu2Si2 is merely a CEF system such as,
for instance, UO2. We are just assuming that the CEF
Hamiltonian is a reasonable zeroth order approximation,
and that k fprocesses, are no-t so important to completely
overwhelm the CEF behavior, in particular for the low-
lying singlets. In any case, we do not expect to obtain
more than a semiquantitative agreement. We assume U4+

ionization and a H4 Hund's rule ground multiplet. The
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TABLE I. Tetragonal CEF states for J = 4. The energies
corresponding to the parameters given in the text are given.

State

Ir„&

11 2)
11's&
11' 4)
11 ~2)

Form

i/4& (12&+ I
—2&)

~(14&+ I
—4&) + yl0&

t/K2 (14&—
I

—4&)

I »+ pl=»
1/v 2 (12)—I

—2))
p I 3) —a I ~ I)

y/4& (14&+ I
—4&) —~v 210&

F. (mev)

0
3.8
9.6

41.8
46.0
71.2
75.4

Hamiltonian includes the CEF contribution and the multi-

polar interaction decoupled in mean-field

H = QBkOk + AQ(Q), (1)
k, q

where Ok [(k, q) = (2, 0), (4, 0), (4, 4), (6, 0), (6, 4)] are
Stevens operator equivalents for J = 4 and Bk are the
corresponding CEF parameters. The eigenstates of
the tetragonal CEF Hamiltonian are defined in Table I.
The splittings between I,'&, I,2, I, &

and the value of e
are linked by a constraint [20]. Q is the symmetrized
operator equivalent representing one of the possible mul-

tipolar order parameters, which have been deduced in
Ref. [13]; (Q) is its self-consistent mean value; A is the
MF constant, representing the Fourier-transformed multi-

polar interaction at the (unknown) ordering wave vector.
To calculate the nonlinear susceptibility g3, defined as in
Ref. [14], we add an external magnetic field H along c,
which gives a Zeeman term —

g p, ~J,H, and a mean-field
RKKY interaction term, N&g2IJ.—s JioJ, (J,). If the order
is not dipolar, this latter is effective only in the pres-
ence of the external field, producing a finite (J,). The
constant Ao is the same which shifts the inverse suscep-
tibility in the Curie-%eiss law, and is proportional to
the Fourier transform at q = 0 of the RKKY couplings.

J3 is derived by subtracting the moment induced by an
external field H = 2 T, and the corresponding linear con-
tribution p, ~;„= gH. This calculation demands imposing
two linked self-consistency conditions due to the two
MF interaction terms (multipolar and RKKY). By using
a parametrization acting directly on the CEF spectrum,
we will first individualize three possible CEF spectral
schemes, associated to three quite restricted classes of Bk
sets. For any given set, Ao will be chosen as the optimal
translation of the inverse susceptibility. The multipo-
lar MF constant A will be fixed by the neutron scattering
data, as we will describe later.

A strong constraint on the possible spectral schemes
is given by the weak transversal magnetic response.
Single crystal neutron inelastic scattering measurements
do not detect any transverse excitation up to 33 meV [8].
Although the two doublets, which supply the transver-
sal matrix elements, could be so broadened not to be
easily detected in an energy-resolved measurement, the

weak and flat transversal susceptibility and magnetization
curves support a bare CEF level scheme with the two dou-

blets lying well above the singlets. Moreover, entropy
considerations indicate that no more than three singlets
can be settled in the low energy window. By properly
inverting the CEF eigenproblem [21], we express the un-

intuitive Bk parameters in terms of four spectral splittings
and of the value of e. In this way we can individual-
ize much more easily and effectively the possible CEF
level schemes. We find that there are only three kinds of
low-lying (E ~ 12 meV) singlet groups compatible with
both doublets being high lying (F ) 30 meV). The first

one (scheme A) is the group I', i
—1,2 —I,l. The s«-

ond one (scheme B) is the group 1,4 —I,', —I,.; the
third one (scheme C) is the group I,3

—I",'i —I,. No-

tice that one can pass from a set of sates of type C to a
corresponding set of type B by a rotation of 45 around
the c axis. In schemes 8 and C the parameter e is quite
constrained, since one has to choose IeI ~ 0.65 (and, of
course, I eI & I/+2 from normalization). A further char-
acterization is possible by using the c axis susceptibility
data. All the singlet groups are compatible with a suscep-
tibility maximum at 50 K: with scheme A one must use

IeI 0.3 and a splitting I,', —I,q around 7.5 meV; with
schemes B and C, by letting the levels in the sequence
above, and with a certain freedom left for the positions
of r,', and I,2. In all cases, the value of Ao we derive is
negative, indicating antiferromagnetic interactions. This
is expected from the antiferromagneticlike dispersion of
the excitations and the negative Curie-Weiss temperature.

By using scheme A in the configuration which gives
a maximum in g at -50 K, one gets at the same
time a maximum in the specific heat at -30 K, but
the peak value for this latter is too high (~ 6 J/mole K
against an experimental value of -4.6). Besides J„
these three singlets can support order parameters of type
J„J,, (J„—J~), and J„J»J,(J2 —J2). However, with none
of these order parameters did we succeed in reproducing
the experimental features, no matter the value chosen
for A.

We pass now to analyzing schemes B and C. In
scheme B the multipoles J„J, and J, (J2 —J2), and in

scheme C the multipoles (J2 —J~) and J,J„JY, are the
best candidates as order parameters. In fact, all these
operators have vanishing diagonal matrix elements, but

they connect the two singlets of type IMJ = +2) with

the ones of type IMJ = ~4). One obtains then more
naturally multipole rather than dipole ordering, since at
low T multipole fluctuations are low energy processes,
whereas dipole fIuctuations are high energy ones. H' we
use the information obtained from the specific heat and

susceptibility maxima we deduce that I,'~ and I,2 are
located roughly between -3.5 and 4.5 meV and between
7 and 11 meV, respectively. No further constraints on
e are needed. We have in this way individualized quite
a restricted range of variability for the three spectral
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parameters characterizing completely the three low-lying
singlets, namely e, E(I,'&) and E(I,2). Concerning the
remaining levels, they do not play a very big role in
the low-T properties. Anyway, the energy of I,&

is
automatically fixed by the mentioned constraint once the
low energy scheme has been chosen. I,3 (I',4 in scheme
C) is set at high energy, as well as the doublets. By using
level schemes of this type, we have analyzed the phase
transitions associated with the different order parameters.
The multipolar MF constant A could be derived in
principle by imposing the value for the T = 0 ordered
multipolar moment. Since this information is missing, we
use as an alternative experimental information the value
of the matrix element T = g p.~ I(0 IJ, I 1)I of the inelastic
transition, which is directly connected to the value of the
ordered moment. In fact, both depend on the degree of
mixing of I',s and I,4 with I",&, I',2, and I', i. Neutron
scattering gives T —1.2p, z [9].

Without going into details, by using the octupoles
J,J„J~ and J,(J„—J2), we cannot obtain a satisfac-
tory model for the phase transition. On the contrary,
we find that the observed behavior can be reproduced
with the quadrupole J„J~ in scheme B. The same
behavior is obtained by a 45' rotation of the total
Hanultonian (including the CEF and the quadrupolar
terms) around c, namely by using the quadrupole J~-
J in scheme C. By choosing A to give a matrix
element of exactly 1.2p, z, the corresponding transition
temperature tends to be too high, around 25—35 K.
Transition temperatures in the range 20—25 K can be
obtained with matrix elements of the order of I p, s, which
seems to us a reasonable compromise. We present the
results for an optimal level scheme, corresponding to
CEF parameters (in MeV units) 82 = —0.657, 84 =
-8.323 X 10 , B6 = -1.004 X 10 , B4 = -4.307 X
10, B6 = 6.051 X 10 . These parameters correspond
to a scheme of type C. The corresponding scheme of
type 8 is obtained by reverting the sign of 84 and 86
The value of the MF constants are Ao = —68.9 mole/emu
and A = 1.85 X 10 ' meV. The transition temperature is
22 K, and the matrix element of the inelastic transition
is -1p,~. We show in Fig. 1 the linear c-axis suscepti-
bility, and in Fig. 2 the specific heat and the nonlinear
c-axis susceptibility. The linear susceptibility is in rea-
sonable agreement with experiment, making allowance
for the shift of TN. A good fit of the a-axis suscep-
tibility can be obtained by using a transversal exchange
constant about eight times the c-axis one. This is analo-
gous to what is observed in CeRu2Si2 [22]. The specific
heat above T~, with a maximum value of 4.6 J/mole K,
is also consistent with Ref. [2]. The form of the anomaly
at TN is not well reproduced, however, since the calcu-
lated specific heat is almost divergent. The mean field
transition is too abrupt, and entropy is removed much
more quickly than in the real system. However, we re-
mark that the total entropy change between T = 0 and
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T = 22 K, namely the area under the C/T vs T curve,
is about 0.40R in our model, which is comparable with
the value of -0.35R which we estimate from the experi-
mental curve of Ref. [2], so that the anomaly in C/T
is distorted in the model, while roughly conserving the
underlying area. This means that the ordering process
is slower in the real system than in the bare CEF-MF
model, but the total disorder removed is comparable.
We will comment later about a possible reason for this
discrepancy. At T&, the linear susceptibility has a discon-
tinuous first derivative, decreasing more quickly below
T&. The nonlinear susceptibility curve is flat above TN,
and has a A-like anomaly at T&. These behaviors agree
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FIG. 2. Nonlinear susceptibility along the c axis, g3, vs
temperature from the CEF-MF model. Right-hand inset:
Experimental points from Ref. [14]. Left-hand inset: Specific
heat C vs temperature. Experimental points from Ref. [2].
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FIG. 1. Susceptibility along the c axis, g, vs temperature
from the CEF-MF model. Experimental points are taken
from Ref. [1]. Inset: g vs temperature in the vicinity of the
phase transition. Experimental points from Ref. [14] have been
rescaled by a constant to make them homogeneous to those of
Ref. [1].
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well with the measurements of Ref. [14]. The calculated
nonlinear susceptibility is, however, too small above T&,
even if the jump is comparable, and the A-like anomaly
is too narrow. This latter defect is probably due again to
the excessive abruptness of the transition in our model,
reducing the size of the critical region. The former could
either be due to conduction electron effects, which will
be discussed later, or to the fact that the third-order sus-
ceptibility can contain additional contributions [23], for
instance in the presence of cooperative 02 terms. Since
the characteristic A anomaly in g3 is already present we
prefer not to complicate the model by trying to include
these extra contributions.

The dispersion of the magnetic excitations can be
fitted to the neutron data by the usual random phase
approximation formula, with a proper choice of the
couplings JttxKv(q), as is done in Ref. [9]. We remark,
however, that JttKttv(q = 0) ~ Ao has been already fixed
from the susceptibility data. If we use this value we
obtain for the transition at q = 0 an energy of -13 meV,
near the experimental value of -13.2 meV. Finally, the
proposed CEF level scheme is compatible with a meta-
magnetic transition at a field of the order of 35 T [11,12].

The simple CEF-MF model seemingly contains already
much the physics of the system. Its defects are very likely
to be due to our neglect of conduction electron effects
other than yielding effective f finteracti-ons. The low

energy part of the CEF level structure we deduced is
quite close to the one used by Cox in his quadrupolar
Kondo theory of UBe„[24], since the I 3 cubic doublet
he uses splits in tetragonal symmetry just into the two
singlets I', 3 and I",&. We propose the following picture:
In the generalized k fexchange -Hamiltonian, containing
either Coulomb and virtual-mixing contributions, the
usual dipolar processes are ineffective at low T due to the
CEF anisotropy, which raises them to several tens of meV.
On the contrary, quadrupolar processes are not quenched.
For a single U ion they can lead to a quadrupolar Kondo
state, in which I,3 and I,'& are mixed with k states. This
state is analogous to the one-ion dipolar Kondo state in a
weak magnetic field, the noncubic CEF terms playing the
role of the magnetic field. In a lattice of U ions, this
same k finteraction in-duces the effective quadrupolar

f fcoupling wh-ich we included in our Hamiltonian. We
propose that above T~ a Kondo-like state is formed.
This yields a broadening of the spectral weight of 1,3
and I,'& due to the dynamical mixing of these two states
produced by the Kondo interaction. This would explain
the broad peak observed in neutron scattering. Below T~
an ordering of the f quadrupoles develops, and a static
mixing of 1,3 and I",

~ occurs. In a MF picture including
k electrons [25], the opening of the I,3

—I,', gap driven

by the quadrupole MF tends then to decouple these two
states, as it is observed experimentally (alternatively,
or at the same time, a decoupling could be produced
by a partial gapping of the Fermi surface induced by

the symmetry breaking state). We think that either the
broadening of the levels and the decoupling process near

T&, tend to make the transition less abrupt than in our
model, the bare CEF behavior being recovered only as the
order parameter grows.

In conclusion, a model based on ordering of localized

f quadrupoles can reproduce semiquantitatively the mag-
netic properties of URu2Si2.
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