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Correlation of High-Frequency Phase Fluctuations in Electromagnetically Induced Transparency
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A quantum analysis of the interaction of two propagating, quasimonochromatic fields with three-level
A-type atoms is presented. It is shown that the recently predicted effect of pulse matching [S. Harris,
Phys. Rev. Lett. 70, 552 (1993)]—the generation of fields with matched Fourier components —is due to
the nonadiabatic response of the medium. This effect leads to a correlation of the high-frequency phase
fluctuations of the fields, and may therefore be used to reduce the noise in short-time measurements of
phase differences.

PACS numbers: 42.50.Lc, 42.50.Hz, 42.65.Ky

The interaction of a three-level atom in a A configura-
tion with two resonant electromagnetic fields drives the
atom into a coherent superposition of the two lower levels
which is decoupled from the fields. The population is

trapped in this state and the otherwise optically thick
medium becomes transparent [Ij. Since the trapped state
involves the relative phase and amplitude of the two
fields, small perturbations with different relative phases
or amplitudes do couple to the trapped state and are ab-
sorbed. Thus, the interaction with the atomic medium
will eventually generate fields with matched Fourier com-
ponents. This phenomenon of pulse matching has recent-
ly been predicted and investigated by Harris [2] in a
semiclassical approach.

In this Letter a quantum analysis of the generation of
fields with matched Fourier components is presented. In
particular it is analyzed to what extent the quantum
phase fluctuations of two independent cw lasers are corre-
lated by the interaction with a sample of three-level A-

type atoms shown in Fig. 1. To this end a c-number
Langevin approach is applied, in which the atomic vari-
ables and the complex amplitudes of the radiation modes
obey stochastic differential equations [3]. It is shown
that the diffusion of the difference phase can be strongly
suppressed for times short compared to the lifetime of the
trapped state.

As will be shown explicitly later on, the matching of
Fourier components cannot be described in the frame-
work of susceptibilities, derived from an adiabatic elim-
ination of atomic variables. In the adiabatic limit, the
atomic system responds promptly to any change of the
fields. A small variation of the relative phases or ampli-
tudes of the fields will drive the atom immediately into a
new coherent superposition, which is again decoupled
from the fields. That is, the atom follows the evolution of
the field and remains in a decoupled state. However,
when the fluctuations of the fields are fast compared to
the response time of the atom, that is in the nonadiabatic
regime, the atom cannot pass fast enough into the new
uncoupled state, and will absorb the corresponding fi8d
fluctuations.

As a consequence of the nonadiabatic character of the
pulse-matching process it takes longer and longer propa-

gation length for low-frequency fluctuations to be
damped out. In an ideal system, where the coherent
trapped state lives forever, one could nevertheless sup-
press fluctuations for practically all Fourier frequencies
by letting the fields propagate through a sufficiently long
cell. However, in a real system, collisional dephasing of
the lower-level coherence makes the trapped state unsta-
ble and leads to a small absorption of the fields. The re-
gion of Fourier frequencies over which the phase fluctua-
tions of the two fields will be correlated in the output or,
in other words, the time for which diffusion in the
difl'erence phase is suppressed crucially depends on the
strength of the two competitive processes —absorption
and pulse matching. For this reason the finite lifetime of
the coherent trapped state, which has been neglected in

Ref. [2), is taken into account in the present analysis.
Furthermore, the absorption is accompanied by an addi-
tional noise contribution from spontaneous emission and
hence these noise contributions are calculated as well.

The propagation of the two quantized, quasimono-
chromatic fields is described by c-number Langevin equa-
tions for the slowly varying complex amplitudes ai z(z, t)
[3j,

+c ai z(z, t) =igi zNo'~ z(z, t) .
z

g~, z =Pi,z/ft) Jh', vi z/2eoAL are the coupling constants
which are assumed to be real. Here vi z are the frequen-
cies of the modes, A is the effective cross section of the
copropagating beams, and L is the quantization length,

bg

FIG. 1. Three-level atom in A configuration. al, 2 denote
space and time dependent complex field amplitudes, yl 2 radia-
tive decay rates, and yo the collisional dephasing rate of the
lower-level coherence.
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which will not appear in the final results. The+'s are the
dipole moments of the corresponding transitions, N is the
number of atoms in the sample, and cri z(z, t) are continu-
ous versions of the atomic polarizations corresponding to
the transitions Ibi) —Ia) and Ibz) —la) [4]. The evolu-
tion of an individual atom labeled with the superscript j is
described by the following set of Langevin equations:

crb, =yicr,'+igi(ai cr( —c.c.)+F1,(t),
crb, =yzcri+ig2(az cr) c.c.)+F]z(t), (2b)

cri = —
2 I crf+igiai(cr]i —a, )+igzazcr/i+F i (t), (2c)

c'rz = ——,
'

I cr)+igzaz(cr]z cr,'—)+ig iaicriti*+F'z (t), (2d)

do —
yocr( i g i

a—
i crf*+igzaz cd+ F~(t), (2e)

where the cr's are the c-number variables corresponding
to the operators

Bi ~ 0, 0' 0 0

az-litz&«l, fbi-l&i&&hil,

cro I & i &&&zl crbz I &z&&&21

In Eqs. (2) yi z are the radiative decay rates of the upper
level into the lower levels bi and bz, respectively. yo is a
collisional dephasing rate of the lower-level coherence cro,

and I yi+yz+yo. Since the population of the lower
levels does not decay, the lifetime of the trapped state is

given by the collisional dephasing time yo . It is as-
sumed that contributions from the phase diffusion of the
fields to the effective decay rate of the polarization cro [5]
are small compared to the collisional term yo and can be
disregarded. The fluctuation forces FJ(t) have zero
mean value and are 8 correlated in time [6]. As usual,
we assume that the atoms are coupled to individual reser-
voirs, which implies that fluctuation forces corresponding
to different atoms are uncorrelated. We thus have

(F'(t)F,'(t')) -D,b;, b(t t') . —

The continuous variables o„(z,t ) are sums of single-atom
variables [4] and therefore obey equations of motion for-
mally identical to Eqs. (2). The correlations of the corre-
sponding fluctuation forces F„(z,t) are related to the
single-atom diffusion coefficients D„~via [3,7]

(F (z, t)F (z', t')) =D„b(z z')h(t —t') . ——L (5)

We are now going to solve Eqs. (I) and (2) by assum-

ing small fluctuations of the variables around their
steady-state mean values, x(z, t) x(z)+8x(z, t). For
this we first consider the semiclassical steady state. We
neglect the noise contributions in (2) and set all time
derivatives —atomic variables and fields —equal to zero.
We then find the propagation equations for the stationary
monochromatic fields

d 2g/g3yoyi, znz, i(z)
c aizz

dz

Here

I 2 yog I g 2 n 1 n 2 + (g i' yzn l +g 2 y 1 n 2 )

x [yoI +2(gi n i+grenz)] ~

and ni z denote I a i zl . One can recognize from Eq. (6) a
nonzero absorption of the fields due to the decay of the
trapped state. The corresponding absorption rates of the
field

x1,2(z) =4g i gz& yoyl, zn 2, I/Dc

vanish as yo 0. Equation (6) shows that there is no

coupling of the phases in the steady state. Furthermore,
it is easily verified that ni(z)/yi —nz(z)/yz is a constant
of motion. That is, the normalized difference of the
steady-state intensities is not affected by the interaction
process, which implies that any initial difference in the in-

tensities of the fields is still present after the propagation
through the medium. Note that for the special case of
vanishing phase decay yo—as considered in Harris origi-
nal work [2]—the steady-state fields are totally unaffec-
ted by the interaction.

One can easily see that the same conclusions hold for
the time-dependent problem (i.e., also for polychromatic
fields) in the adiabatic limit, where the time derivatives of
the atomic variables are set equal to zero but the time
derivatives of the fields are kept. In this case we simply
have to add a time derivative to the left hand side of Eq.
(6). Hence, as stated above, there is no pulse matching
in the adiabatic regime.

In the next step we solve the (linearized) stochastic
equations (I) and (2) for the small fluctuations bx(z, t).
In order to simplify the analysis we first eliminate the fast
decaying atomic variables, which are the population cr, of
the upper level, the sum of the lower level populations
crb i+ crbz 1

—cr„and the polarizations cri, crz corre-
sponding to the optical transitions. With this partial adi-
abatic elimination we restrict the validity of our fluctua-
tion analysis to Fourier frequencies small compared to
the optical decay rates yi and yz, which is, however, the
most interesting region. For larger Fourier frequencies
the field fluctuations are less and less affected by the in-

teraction with the atomic system and the pulse matching
disappears. The set of linear stochastic diff'erential equa-
tions for the remaining variables can be transformed into
algebraic equations by a Fourier transformation accord-
ing to x(co) j — dt x(t)e' '. Substituting the solutions
into the field equations eventually yields an equation of
motion for the fluctuation of the diff'erence phase bitr of
the two laser modes [7],

d 1
bitr(z;co) = — [x, i x,]bitt(—z;co)+—F,(z;co) .

dz

The damping rate in Eq. (8), xv, thereby reads
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FIG. 2. Damping length A~ of phase-difference fluctuations
divided by absorption length A versus freqeuncy of fluctuation
for equal coupling strength g& g2—=g, decay rates y&-y2=y,
and field intensities n~ n2—=n. The parameters are g n/yyp

0.5 (curve a), 1 (curve b), 2 (curve c), 5 (curve d), and l0
(curve e).

0.S 40

FIG. 3. Damping of initial phase fluctuations, exp[ —xv(0;
co)z], as a function of propagation distance z and fluctuation

frequency m.

8g~g/N(n~+n2)(y~g/nz+ y2g~n~)

1 Dc 1 +co

8g~ g/N(n~+n2)
I 1 c I +co

where in the second equation we have assumed that yo is

small compared to the radiative decay rates. The explicit
forms of xv and Fv are not interesting here and can be
found in a more detailed analysis [7]. The damping rate
of the phase-difference fluctuations displays a Lorentzian
dip at ro 0, which means —in agreement with the adia-
batic result —the damping vanishes as ro 0. The width

of the Lorentzian dip is I s yp+2(g]n~+g)nz)/I. r,
decreases when the Rabi frequencies of the fields become
smaller. On the other hand, as can be seen from Eq. (7),
the absorption rate increases. The extent to which
phase-difference fluctuations can be suppressed by the in-

teraction process depends on the ratio of the phase-
damping length Av—= I/x„to the absorption length A—= I/a
(where equal Rabi frequencies and decay rates for both
optical transitions are assumed, such that x.~-x.z=x').
This ratio is plotted in Fig. 2 as a function of the Fourier
frequency for different values of the Rabi frequency. It
can be seen that an optimum quenching of phase-differ-
ence fluctuations can be achieved, if g n is of the order of
a few yyp.

We now consider the stationary spectrum of the
phase-difference fluctuations

Sv(z;ro) —= ro' dr (by(z, r)byr(z, r —r ))e' '. (10)

S~ is defined in such a way that for two independent
lasers with freely diffusing phases we have a constant
spectrum with Sv(ro) Av~+Av2, where Av; denotes the
linewidth of the ith laser. S~=—0 corresponds to the stan-
dard quantum limit. Making use of the correlation prop-
erties of the fluctuation forces, Eq. (5), we find from Eq.
(8) the propagation equation for the spectrum

Sv(z;ro) = —xv(z;ro)Sv(z;ro)+ a~(z;ro)N„(z;ro) .
dz ' '

Equation (11) can be solved analytically, if the propaga-
tion distance is small compared to the absorption length

(x~ z) '. In this case the z dependence of xv and Nv can
be neglected and we find

Sv(z;ro) Sv(0;ro)e v ' +Nv(0;ro) Il —e v '
) .

(12)

Figure 3 shows e ~ ' for y= y~ =y2&& yo and
—r~(0;o))z

g~n~(0) =gznz(0) Syyp. Outside a certain frequency
region initial fluctuations of the phase difference are
damped out very rapidly.

For the case of equal oscillator strength and decay
rates g~ =gz =g and y~ yz

= y, and equal intensities
n~ =nz n, the atomic noise term Nv(0;ro) takes on the
simple form

g Lyo 2m yo

yc g nI

where we have again used that yp«y. The maximum
amount of atomic noise contributions for Fourier frequen-
cies ro« y and for g n ~ yyp (that is under conditions of
electromagnetically induced transparency) is g Lyp/ye.
When we express the coupling strength g and the radia-
tive decay rate y in terms of the dipole matrix element
and the wavelength A, , this quantity can be written in the
form (3/4n)(A. /A)yp. Since the wavelength is small
compared to the beam diameter, the atomic noise contri-
bution is small. For example, taking A-0. 1 cm, yo-1
kHz, and X, —1 p.m, it is of order 10 Hz and may
therefore be neglected.

In the present paper it was shown that the interaction
of two quasimonochromatic fields with three-level A sys-
tems leads to a suppression of phase-difference fluctua-
tions, which is equivalent to a correlation of the phase
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locking of the phases of the two modes in the adiabatic
regime. In this case, phase fluctuations can be correlated
also in the low-frequency limit, as shown very recently for
an ideal A system with two classical and two quantized
cavity fields by Agarwal [11]. The degree of noise
suppression in such systems will, however, be sensitive to
fluctuations in the coherence generating process, which
therefore have to be taken into account.

The author would like to thank Processor Steve Harris
and Professor Marian O. Scully for stimulating discus-
sions.

FtG. 4. Phase-difference diffusion of two independent lasers
(dashed line) with free diffusing phases at the input of the
atomic cell and after propagating half the absorption length
through the cell (solid line) in arbitrary units. For comparison
the typical behavior of a two-mode phase-locked laser is also
shown.

fluctuations at the output. This correlation is a nonadia-
batic effect; that is it affects only fluctuations fast com-

pared to the characteristic time of the atomic evolution.
There is no locking of the phases in the adiabatic regime.
The characteristic time period over which the diff'usion is

essentially suppressed is thereby determined by the width

of the exponential in Eq. (12). Noise contributions from

spontaneous emission are small and may be disregarded,
if the collisional decay of the lower-level coherence is

small. Figure 4 shows the diffusion rate of the phase
difl'erence as a function of time for two independent lasers
at the input (dashed line) and after propagating through
the atomic medium (solid line). The propagation dis-

tance is A/2, and all other parameters are the same as in

Fig. 3. For times short compared to —yn/10 correspond-

ing to the width of the spectrum in Fig. 3, the diffusion of
the phase difference is suppressed at the output. For long
times the phase difference undergoes free diffusion with a

rate equal to that of the input fields. For comparison the
typical behavior of a two-mode phase-locked laser is also
plotted. Whereas a phase-locked laser leads to a substan-
tial noise reduction in long-time measurements of phase
differences, the system discussed here can strongly dimin-

ish the noise in short-time measurements. Depending on

the ability to suppress collisional dephasing of the lower

level coherence, here "short time" can very well mean

milliseconds.
It should be noted that if a coherent superposition of

the lower levels is generated by other means than the
quantized fields themself, for example, by injecting atoms
in a coherent superposition [8], or driving the levels with

a strong microwave [9] or Raman fields [10], there is a

[I] The phenomenon of coherent population trapping has
been extensively studied in the past. For early work see,
for instance, G. Alzetta, A. Gozzini, L. Moi, and G. Or-
riols, Nuovo Cimento 368, 5 (1976); E. Arimondo and G.
Orriols, Nuovo Cimento Lett. 7, 333 (1976); H. Gray, R.
Whitley, and C. Stroud, Opt. Lett. 3, 218 (1979); tran-
sparency in an optically thick medium due to coherence
effects has been demonstrated by K.-J. Boiler, A.
Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593
(1991);3. E. Field, K. H. Hahn, and S. E. Harris, Phys.
Rev. Lett. 67, 3062 (1991).

[2] S. E. Harris, Phys. Rev. Lett. 70, 552 (1993).
[3] A description of propagating fields with c-number

Langevin equations can be found in P. D. Drummond and
C. 3. Carter, 3. Opt. Soc. Am. B 4, 1565 (1987).

[4] In a one-dimensional model the sample of atoms is subdi-
vided in cells with center points zt (I —M, . . . , M).
The continuous variable ct(z, t) is then defined as ts(z, t)
=/V 'limst (2M+ I )g scrj(t), where trj(t) is the
corresponding single-atom variable. A detailed discussion
of this can be found in Ref. [7].

[5] B. J. Dalton and P. L. Knight, Opt. Commun. 42, 411
(1982).

[6] C. W. Gardiner, Handbook of Stochastic Methods
(Springer, Berlin, 1983).

[7] M. Fleischhauer (to be published).
[8] M. O. Scully, S. Y. Zhu, and H. Fearn, Z. Phys. D 22,

471 (1992).
[9] H. Fearn, M. O. Scully, S. Y. Zhu, and M. Sargent III,

Z. Phys. D 22, 495 (1992).
[10]S. Y. Zhu, M. O. Scully, H. Fearn, and L. M. Narducci,

Z. Phys. D 22, 483 (1992).
[I I] G. S. Agarwal, Phys. Rev. Lett. 7l, 1351 (1993). In this

paper the atomic variables have been eliminated adiabati-
cally, and consequently the mutual coupling of the phases
of the quantized cavity modes vanishes in the case of de-

generacy, that is for zero detuning of the quantized from
the classical fields.

992




