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Reductions, Relative Equilibria, and Bifurcations in the Generalized van der Waals
Potential: Relation to the Integrable Cases
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Complementing the work of Alhassid et aL we study the global dynamics of the averaged sys-
tem of the generalized van der Waals interaction in the reduced space which is a two-dimensional
sphere. We find lines of 1ocal "pitchfork" and global "oyster" bifurcations emerging from the known
integrable cases P = &, 1, 2; this explains the chaos-order-chaos transition. We present the libra-
tion and circulation modes of the Runge-Lenz vector and its stability domains. The appearance-
disappearance pattern of separatrices for the known integrable cases leads us to conjecture that
those are the only ones.

PACS numbers: 31.50.+w, 03.20.+i, 32.60.+i, 34.30.+h

The generalized van der Waals interaction is a dynam-
ical system proposed by Alhassid et at. [1] whose Hamil-
tonian in cylindrical coordinates is

'8 = 'Rp+ 'P, (1)

Farrelly and Howard [8] have found two integrals Z'p for

P = s, 2, following the approach of Bliimel et al. [9] with
the Paul trap system. For the sake of completeness we

bring the three known integrals, valid for all m, together,

with
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where r = V P2+ zz, Pq, Py, and P, are the canonical
momenta conjugate to the coordinates p, p, and z, re-
spectively, with two parameters: p, which is square of a
frequency, and P, which is dimensionless. This Hamil-
tonian defines a 2 degrees of freedom system because it
possesses cylindrical symmetry: P is a cyclic variable and
so the momenta Py is conserved. Since Py is the z com-
ponent of the angular momentum, it can be quantized
as Py = tnt, where rn is the magnetic quantum number.
The system (1) has some special submanifolds as solu-
tions: planar polar solutions rn = 0, which are functions
of P, and include rectilinear solutions along the 0-z axis;
and equatorial trajectories for which z, Z vanish perma-
nently which define an integrable system of 1 degree of
freedom for all values of P.

Hamiltonian (1) represents several cases of physical
interest in solid-state physics and physical chemistry.
Thus, when p = 0, we have the standard hydrogen-
atom problem or Coulomb problem. When P = 0 (and
p = —~z/2, where u is the electron cyclotron frequency)
we have the quadratic Zeeman efFect in moderate or
strong magnetic fields and it has been studied extensively
(see, for instance, Gay [2] and Hasegawa et at. [3]). For
P = 1 we have the integrable spherical quadratic Zeeman
effect. If P = ~2 (and p = —1/16ds, where d is the
distance from atom to the surface), we have the instan-
taneous van der Waals potential [4].

The pioneering work of Alhassid et at. set up two limes
of studies: search for integrals and understanding of the
dynamics. For m = 0 Ganesan and Lakshmanan [5]
found integrals for P = 2, 2; numerical and analytical
studies of the flow have also been done [5—7]. For m g 0

where 2 = pP zPq and J—
' = pPq+zP». With respect to

the global dynamics, some analytical and numerical work
has also been done by Ganesan and Lakshmanan [10] and
Farrelly and Howard [8] although they mention the need
for further investigation. We think this Letter responds
precisely to that question, showing the connection with
the integrable cases.

We restrict ourselves in what follows to the region of
phase space where p is a small parameter. Alhassid et
at. explain "the sensitivity of Rydberg atoms to pertur-
bations and the wealth of experimental information they
can yield has led to the revival of interest in the study of
atoms in external fields. " Expressing the Hamiltonian in
Delaunay variables [11,12], and after the normalization
over the mean anomaly, we get the reduced Hamiltonian

[7]. The principal quantum number, that we denote as L,
is now an integral. The first order of the new Hamiltonian
is precisely the adiabatic invariant found by Alhassid et
aL,

A = (4- P')IIAII'+5(&'- 1)A'. ,

where A is the Runge-Lenz vector and A, is the z com-
ponent of A. This generalizes the one given by Solov'ev

[13] and Herrick [14] for the Zeeman effect. In general for
each action L the orbital space of the reduced perturbed
Coulomb problem is given by Sz x Sz (see [15]). Never-
theless for systems that enjoy an axial symmetry Meyer
showed [16] (see also [17])that there is another reduction
we can make. In other words, the rotational symmetry
maps it onto a conservative system with only 1 degree of
freedom. For each pair (n, m) = (L, H) the double re-
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duced orbital space is a two-dimensional sphere 82, which
gives us the dynamics of the Runge-Lenz vector. Earlier
work in moleeules [18], formally speaking, is closely re-
lated; the S2 representation is applied to rotational and
vibrational problems, noticing types of bifurcations sim-
ilar to the ones found here.

Providing S2 with a set of global coordinates is another
matter. Coffey et aL [19] proposed the following global
representation:

(1 (G x +)k (2 = ]]G]]+Is

x
2

such that

(2 + (2 + (2 (L2 H2)2/4

where G is the angular momentum vector. Then, they
applied them to explain the bifurcation in the Zeeman ef-
fect and the nature of the critical inclination in satellite
theory, showing that there are two pitchfork bifurcations
of circular orbits. Some authors, choosing local repre-
sentations of the reduced space on a cylinder, had failed
to represent the neighborhoods of circular and equatorial
orbits where significant events are expected to occur. We
will see more of that in this Letter, where we use these
coordinates ((1,(2, (3), referring to them as CDM.

Throughout the interval 0 ( o ( 1, where o = H/L,
CDM coordinates locate the orbits of the reduced space
as follows: the north pole of the sphere S(L, H), i.e. , the
point Eo(0, 0, L2(1 —o2)/2), represents the circular or-
bits (e = 0) with inclination cos I = o, whereas the south
pole, i.e. , the point of the sphere Es(0, 0, —L2(1—o2)/2),
represents the class of elliptic orbits with eccentricity
e = Ql —o2 in the equatorial plane. Finally any generic
point E((1,(2, (3) represents orbits with argument of pe-
riaxis

sinQ(2+(2' g(2+(2
and eccentricity e = gl —G2/L2, where G = [~G~~ =
Q(3 + L2(1 + o'2)/2. In the limit o' = 1 the sphere is
reduced to a point corresponding to equatorial circular
orbit.

Applying Liouville's theorem (, = ((,, A), and rescal-
ing the time, the global equations of motion are

((1~ (2y (3) = (Ml(2) —M2(1, M3(1(2), (4)

1 —4P2

5(1 —P2)
o2(P) = 5(1 —P2)

1 —4P2

(see Fig. 1) which also define diKerent regions for the
phase flow. In regions II and V we have two equilibria.
In regions I, III, and IV we have four equilibria.

(iii) The points of the meridian circle (2 ——0.—Again
setting (4) equal to zero, and assuming now (2 = 0, we

must impose M2 = 0 which leads to the relation for p:

n'(4 —&') = o.

As we assume in this paper rn g 0, which means that
Il g 0, we have roots only when p = k2. Then, all the
points in this meridian circle (2 = 0 are equilibria.

This case is related to the line N4Ns in the parameter
plane of global "oyster" bifurcations. We name the con-

explicit in (4), it is present through c and rl2.

Our purpose is not to integrate the averaged equations,
vrhose solutions can be expressed by elliptic functions,
but rather to search for the relative equilibria as functions
of the physical parameter P and the dynamical parameter
O.

The relative equilibria and their bifurcations are as fol-
lows.

(i) The poles Ec, E3.—For any pair of values (P, o)
in the parameter plane, the right members of Eqs. (4)
vanish for (1 = (2 = 0. So Ea, E3 are always equilibria.

(ii) The points E1,E2 in the meridian circLe (1 ——0.—Setting (4) equal to zero, and assuming now (1 ——0,
we must have M1 ——0, from which we get for (3, or
equivalently for g,

5o2(1 —p2) —(1 —4p')Il4 = 0.
Then, keeping in mind the constraint o2 ( Il2 & 1, and
assuming p g [2, 1], we get

rl = [5o'(I —0') /(I —4&')]'" (5)
and finally from (3) we compute E1,E2. Moreover the
limit value Il = 1 lead(s) us to bifurcation lines NIN2,
N4Ns, given by o1(p) corresponding to a pitchfork of
the point Eo, from the other limit Il = o we get the
bifurcation line N3N4 given by o 2(p) which corresponds
to a pitchfork of the point E3.

M1 =3q +(1 —p )~ 5e —4q +2 2 ( 2 2 5(1
G2L2) '

3& +(1—P )~
2 5(2

G2L2)'

10(1—P2)
L2

~h~~~ Il = G/L, c = H/G. Notice that although o is not

I"IG. 1. Bifurcation lines and regions of stability in the
plane of parameters. We only consider P & 0. By ¹

we
mean the asymptotic line o = 2/5 ~ .



VOLUME 72, NUMBER 7 PHYSICAL REVIEW LETTERS 14 FEBRUARY 1994

figuration "oyster bifurcation, " because in the neighbor-
hood of P = 2 we see the two branches of the separatrix
as valves hinging on Eo or Es with the oyster closing its
valves hinging on Es when we move in region III (P & 2)
approaching the line N4N5, becoming the meridian cir-
cle (2 ——0 when P = 2. In region IV (P & 2), the oyster
opens its shells, but hinging now on the north pole Eo.
As we will see from the stability analysis in the coming

paragraphs, crossing the line N4Ns the north pole and
the south pole switch their stability.

In summary, for the integrable cases P = s, 1, for any
value of ir, there are two equilibria, Eo, Es, for P = 2 we

have a degenerate situation: all points on the meridian

(s = 0 and Ei,s = (0, +L ~o(1 —0), —'L (1 —cr) /2) in

the meridian (i = 0 are equilibria. When o' ~ 0 we are
near the south pole; when n grows the equilibria move on
the meridian towards the north but they remain always
in the south hemisphere. For all the other values of I9
there are two equilibria Eo, Es and two more Ei,Es when

«oi, s(P)
Drawing the evolution of the energy at the difFerent

equilibria through the parameters gives us the stability
of these points. Indeed, since for each pair (P, o ) the equi-
libria are over a compact, Ss, the critical points which
correspond to maximum and minimum values of the en-

ergy are stable, whereas critical points in which the en-

ergy takes an intermediate value, are unstable. The pre-
vious analysis suggests three distinguishable intervals ac-
cording to the number of bifurcations: (a) 0 ( o ( 1/v 5

(3 bifurcations), (b) 1/~5 & cr ( 2/v 5 (2 bifurcations),
and (c) 2/~5 & cr & 1 (3 bifurcations). In Fig. 2, we
represent the evolution of the energy at the equilibria for
o. = 0.2, 0.6, 0.95, one for each of the previous intervals.

For o = 0.2 we observe how the south pole Es (dashed
line) is an absolute maximum value for the energy in the
interval 0 & P & 1.012 32, an absolute minimum value of
the energy in 2 & P, and the energy in it takes an inter-
mediate value in 1.012 32 (P & 2. Therefore, Es is un-
stable in this last interval, and stable in the complemen-
tary interval. In the same figure, the energy at the north
pole Eo (dotted line) takes an intermediate value with
respect to the other critical points in 0 & P & 0.45883,
an absolute minimum in 0.45883 & P & 2 and again, an
intermediate value for P & 2. The critical points Ei 2 are
absolute minima for the energy in 0 & P & 0.45883, and
absolute maxima in P & 1.01232, and they do not exist
outside these intervals. Therefore, when they exist, they
are stable points.

A similar analysis may be derived from other values
of cr. Thus, in Fig. 2 for cr = 0.6, the energy at the
north pole Eo is minimum in 0 & P & 2, and takes an
intermediate value for P & 2. However, at the south pole
E3 is maximum in 0 & P & 1.14165, intermediate in
1.14165 & P & 2, and minimum in P & 2. The points
Ei q only exist for P & 1.14165 and they are always
maximum values of the energy.

Finally the lower part in Fig. 2 corresponds to u =

3"

2

Eo
0 ~ e a

E,2

E0
Ep

0.5 1 ' 51.5"

a= 0.6

E12

Ep

0. 5 l. . 5 N 2

Ep

0 5"

2. 5

-0 5-

~ ~

-1 5"

a-095
Ep

0.5 2. 5

X. Ep

FIG. 2. Evolution of the energy at the equilibria as a func-

tion of P for o = 0.2, 0.6, and 0.95.

0.95. Since bifurcations occur in a narrow band, a close

up of the picture is provided for observing the changes
in stability. The north pole Eo is an energy minimum
in the interval 0 ( P & 2, Es takes an intermediate
value in 2 & P & 2.61795, and from this value on, the
energy at Eo is again maximum, and therefore, Eo is
stable for P & 2.61795. The south pole Es is unstable
in 1.71639 & P & 2 and stable in the rest. Finally the
points Ei,q exist for 1.71639 & P & 2.61795 and the
energy takes there the maximum value. Thus we have
complemented in this way the analysis of Alhassid et aL

(see Ref. [1], p. 1546) where they consider in detail the
case m = 0.

We have determined (Fig. 3) the global picture of the
dynamics of the Runge-Lenz vector: its libration and
circulation modes. The trajectories are obtained not by
integrating numerically the differential system, but sim-

ply by drawing the level contours of the manifold (2) on
the sphere of radius L2(1 —cr2)/2. The flow for each of
the six domains (see Fig. 1) of the parameter plane is
shown. In regions II and V the Runge-Lenz vector has
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only a circulation pattern. In regions I, III, and IV we see
patterns of librations and rotations: circular (north pole)
and equatorial (south pole) orbits have undergone pitch-
fork bifurcations crossing o ( oq, oz, respectively. The
Zeeman effect (P = 0, region I) and the van der Waals
case (P = ~2, region III) belong to different regimes; in

the Zeeman case Coffey et al. found the pitchfork for cir-
cular orbits at "critical inclination" c = I/~5; we have
shown here that in the van der Waals case there is a
pitchfork bifurcation for equatorial orbits at a "critical
eccentricity" e = v«'2/7, meanwhile circular orbits are
stable. Finally, the phase portrait for P = 2 shows the
Runge-Lenz vector having a pure libration pattern.

We now come to the question of integrability: Are
there more integrals for this family of Hamiltonians (1)?
Is there any way of getting new clues of integrability

[20] from the averaged global flow? If the appearance-
disappearance pattern of separatrices in the orbital space
of the normalized system is taken as hinting at integra-
bility [21], the study done here shows that the list con-
sists only of the classical case P = 1 together with the
other two recently found cases P = z, 2. Moreover, in the
appearance-disappearance pattern of separatrices for the
integrable cases we see also an explanation of the chaos-
order-chaos behavior observed by Ganesan and Laksh-
manan [10] in their quantum mechanical study of this

Unstable
South pole

South pole view

FIG. 3. Six diferent types of flow on S over the param-
eter plane, showing north and south pole views. Notice that
although the radius of the spheres are functions of a we have
presented all of them with the same radius.
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