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Controlling Chaos in a Discharge Plasma
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We have investigated experimentally controlling chaos in a discharge plasma. The power spectra, in-
forrnation dimension, and especially the Lyapunov exponent spectra confirm that a small periodic modu-
lation on the discharge voltage can be effectively used to control chaos in a discharge plasma system.
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Nonlinear dynamics phenomena are abundant in na-
ture and laboratory plasma. A rich variety of behavior
has been observed in laboratory plasma, including self-
oscillation, periodic doubling bifurcation, intermittency,
quasiperiodicity, and chaos [1-4]. However, in many
real physical systems, chaos is an undesirable phenom-
enon which can have harmful consequences; in particular,
chaos in magnetic confined plasma may evolve into fully
developed turbulence and lead to the anomalous energy
and particle cross-field transport. Therefore, the ability
to control chaos is of much practical importance. Since a
new method of controlling chaotic dynamical systems was

proposed by Ott, Grebogi, and York (OGY) [5], control-
ling chaos has been a subject of intense research. It was

recently demonstrated in several experiments that
dynamical control of chaos can be achieved by the OGY
method [6-9]. The method is based on the fact that
there exist an infinite number of unstable periodic orbits
embedded in the chaotic attractor, and that only small,
judiciously selected perturbation to an available system
parameter is needed to stabilize some of these. Ott, Gre-
bogi, and York have given a prescription for finding the
form of time-dependent parametric perturbation and am-
plitude p* necessary to control chaos. While the method
has been demonstrated to be efficient in the application to
some systems, one needs a fast responding feedback sys-
tem that produces an external force in response to the
system's dynamics, because all values needed to achieve
control have to be calculated from an experimental signal
with the embedding technique [10]. In practice the form
and amplitude of parametric perturbation can be deter-
mined numerically and experimentally by directly observ-

ing the behavior of chaotic system response to the select-
ed parametric modulation. This method has been suc-
cessfully applied to the periodically driven pendulum
[11,12] where chaos in a dynamics system can be
suppressed by introducing small parametric perturbation
to a system constraint, and to an experimental system of
microwave-pumped spin-wave instability [13]. The
nonfeedback aspects of this control add considerable flex-
ibility to the present control options. In this Letter, we

would like to present the experiments on controlling
chaos in an undriven plasma by a small periodic modula-
tion of discharge voltage. The power spectrum, the infor-

mation dimension, and the Lyapunov exponent spectrum
confirm clearly that the chaos in the undriven plasma has
been suppressed when the modulation frequency and am-
plitude are carefully chosen. Although the dynamical
control of chaos has been demonstrated in other physical
systems, to the best of our knowledge, this is the first time
that such control has been achieved in a plasma.

The experiment has been performed in an unmagnet-
ized steady-state plasma device [4] which consists of an
electron-emitting cathode (six parallel tungsten fila-
ments) at one end and a current-collecting anode (a rec-
tangular stainless steel plate) at the other end, as shown

in Fig. 1. The cathode is connected to the chamber wall

and is electrically grounded. The anode is mounted on
the shaft of a probe so the distance between the cathode
and anode can be varied. The argon plasma is produced
by a dc discharge. The discharge is controlled by argon
pressure (P, ), filament current (If), discharge voltage
(VD), and the distance between the cathode and the
anode (d). The typical parameters of the steady-state
plasma measured by a Langmuir probe are electron den-
sity n, =10 -10 cm, electron temperature T, =1-3 eV,
and ion temperature T; ((T, . The electron saturation
current signal 1„(t)of the probe which is proportional to
the electron density and the discharge current ID is
recorded by digitizers (8 bit, N =8192 data points, sam-
pling interval ht =16 ps). Power spectra, information di-
mensions, and Lyapunov exponents calculated from the
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FIG. 1. Schematic of experimental setup and discharge
current-voltage characteristic curve.
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time series signals are used to detect periodic and chaotic
motion.

We have previously studied this discharge plasma ex-
tensively and found that the nonlinear dynamical phe-
nomena are always associated with the occurrence of hys-
teresis in the current-voltage (I-V) characteristic of the
discharge [41. Moreover, the chaotic behavior always
occurs in the region near the turning point on either the
lower or upper branch of the I-V curve, where the plasma
potential is negative with respect to the anode. This is
the regime where the plasma can be driven to chaos by
varying some of the discharge parameters (P„Iy, Vn, d).
Because the chaotic state on the lower branch can be
maintained over a rather wide range of the discharge pa-
rameters, in the experiments presented here we control
the plasma state to approach the region near the turning
point B on the lower branch by adjusting Vn, while keep-
ing all other system parameters constant. For the given
discharge parameters P, 1.0X10 torr, Iy=26.0 A,
and d 9.0 cm, when Vn is increased above a threshold
value of 12 V, the discharge develops a low-frequency (a
few kHz) self-oscillation, which can be observed in both
signals In(t) and 1„(t). A potential relaxation instabili-

ty, which has been observed experimentally in the posi-
tively biased end plate Q machine [14], is suggested to be
responsible for the self-oscillation [15). The fundamental
frequency of self-oscillation depends on the discharge pa-
rameters. As a variation of pressure P„ this self-
oscillation may transit to chaos through either the period-
ic doubling, intermittency, or quasiperiodicity. As report-
ed before, when the chaotic regime sets in not far above
the threshold boundary, chaos is characterized by a low

dimension chaotic attractor (2 (Dz & 3) and one positive
Lyapunov exponent, which represents that the plasma is

in a "weakly" chaotic regime. With the undriven plasma
in chaotic operation, control was attempted by applying a
smal/ modulation to one of the discharge parameters
without creating new orbits with very difTerent properties
from the existing ones. The most convenient parameter
for modulating was found to be the discharge voltage,
which could be simply done by applying a sinusoidal sig-
nal V sin(2' r) (V «Vn, f:0-5 kHz) (through 3:1
transformer) in addition to VD. By adding a small modu-
lation to VD with appropriate frequency and amplitude
we have been able to control the chaotic state. Figures
2-4 show the results obtained with a sinusoidal voltage
modulation imposed after the plasma is operated in a
chaotic regime. Figure 2 shows that the power spectra of
ID(t) evolve with increasing modulation amplitude V at
the frequency f~ 1.8 kHz matched with the characteris-
tic frequency fn of the system. Before the V is applied
the power spectrum as shown in Fig. 2(a) displays a
broadband feature which is a characteristic of chaos.
There is no significant variation of the power spectrum
until V =60 mV From the power spectra shown in

Figs. 2(b)-2(d), it can be seen that as V increases above
this value the level of the broadband noise decreases pro-
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FIG. 2. Power spectra with the increase of the amplitude of
the perturbation at a given frequency f 1.8 kHz for V 0,
100, 200, and 300 mV, respectively. The other discharge pa-
rameters are P, 1.0X10 torr, II 26 A, VD 12 V, and
d 9.0 cm. All the plots are on a log-linear scale with the same
vertical axis calibration. The full dynamic range of all spectra
is 80 db.

I

2.00.0

gressively and some of the sharp lines characteristic of a
periodic signal become more and more visible. The fun-
damental frequency fo and its harmonic frequency
emerge from the noise background. This observation is in
qualitative agreement with the numerical results obtained
in studying the effect of a small parametric perturbation
on the Du5ng-Holmes equation [I lj. This is a good in-
dication that "the degree of chaoticity" has been reduced
and the chaotic motion has been converted to periodic
motion. In addition it should be noted that the maximum
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perturbation amplitude applied to the discharge voltage is

only a few percent of VD and when the discharge voltage
is increased or decreased by an increment that is the
same as the maximum V, the original chaotic attractor
remains almost unchanged. On the other hand we have

applied the small perturbation to a periodic attractor and
found that the perturbation cannot alter the basic topo-
logical structure of the orbits on the attractor. This fact
confirms that chaos is controlled by a small periodic per-
turbation of an available system parameter.

The control of chaos is further demonstrated by the
variation of information dimension [16] of the chaotic at-
tractor with increasing V . The information dimension is

calculated with the embedding technique from experi-
mental time series signals [10], and saturates for the
embedding dimension larger than ten. Figure 3 shows
the dependence of the information dimension on the
modulation amplitude V~ for a given frequency. For
V (60 mV the information dimension shows virtually
no change (Di =2.75), characterizing a chaotic attractor.
When the modulation amplitude increases above the criti-
cal value V 60 mV, the information dimension de-
creases toward D i 1 with increasing V, characteristic
of a periodic trajectory. This result further confirms that
the chaotic motion in a discharge plasma can be convert-
ed to periodic motion by a small periodic modulation of
the discharge voltage. It is worth mentioning that in the
experiments we have examined the effects of the modula-
tion phase on controlling the system. It has been found
that all the observed phenomena are independent of the
initial phase of the parameter modulation, which agrees
with the numerical results obtained in studying control
chaotic dynamics with weak periodic perturbation [121.
This is not surprising since the behavior of long-term evo-

lution of the chaotic plasma system is determined by a
motion on the attractor, where the unstable periodic or-
bits are dense in a typical chaotic attractor. Therefore
when the modulation frequency and amplitude are select-
ed appropriately, the unstable orbit becomes phase locked
to the external parameter modulation after a time delay
related to the applied modulation. It is suggested that the
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system has the ability to find an appropriate periodic or-
bit for a given parameter perturbation.

To attain further insight into how the system responds
to the periodic perturbation, we performed a series of ex-
periments where the measurements were carried out by

scanning the modulation frequency f at constant V

and recording the Iluctuation signals of ID(t) by a data
acquisition system. The Lyapunov exponent spectrum is

calculated from the experimental time series signal ID(r)
by a practical algorithm [4,17-19] in order to character-
ize the behavior quantitatively. Once the exponents are
determined, the Kolmogorov entropy can be obtained
easily by summing all of the positive Lyapunov ex-
ponents. For the low dimension chaotic attractor report-
ed here, the Kolmogorov entropy is the same as the lead-

ing Lyapunov exponent because of only one positive ex-
ponent that exists in the chaotic attractor. The results
are depicted in Fig. 4 where we give the leading

Lyapunov exponents ki as a function of P (P f /fo) for
several values of V . For V~ 100 mV, which is not far
above the critical value V~, the leading exponent li is re-
duced significantly in some narrow ranges of P near the
rational values (e.g., P z, 1, and 2), and less sig-
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FIG. 3. The information dimension D~ vs voltage modulation

amplitude for f 1.8 kHz. The other discharge parameters
are the same as in Fig. 2.

p
FIG. 4. The leading Lyapunov exponents as the function of P

(P f /fp) for V -IOO, 200, and 300 mV, respectively. The
other discharge parameters are the same as in Fig. 2. X,] 1.SO

for V~ =0. The Lyapunov exponents presented are normalized

by the fundamental frequency fo The points repres. ent experi-
mental results and they are connected by lines to guide the eye.
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nificantly as P is beyond these ranges, as shown in Fig.
4(a). Here the curve of leading Lyapunov exponents as

the function of P has the appearance of "tongues" similar
to those observed in phase-locked phenomena [13].
When V is increased further to 200 mV, it can be seen

from Fig. 4(b) that the tongues have become wider, and

the values of Xf have vanished in the vicinity of the p= 2,
1, and 2. Moreover, at these levels of control signal mag-

nitude, the values of A, 2 have become negative around
these P values. Furthermore, a comparison between Figs.
4(b) and 4(c) immediately shows that the tongues be-

come wider, and the range of frequency over which chaos
can be controlled is extended more significantly with in-

creasing V . In fact, when the phase locking is achieved

chaos can be suppressed more easily with increasing
modulation amplitude V . This implies that when an un-

stable chaotic motion becomes phase locked to an exter-
nal drive force the transition from chaos to periodicity
can be realized.

The experimental results demonstrate how a relatively
weak periodic perturbation can control the chaos in the

discharge plasma. A possible mechanism explaining this

phenomenon is as follows. By applying an external
modulation, one of the system parameters p can be modu-

lated periodically about its mean value, with period
T~=nTO/m (T~ ~f~ ', To fo '), where n and m are
integers. By adjusting the modulation amplitude ap-

propriately, the system parameter p can be periodically
shifted such that the dynamics is forced to fall on the
stable manifold of the original unstable periodic orbits,
thus resulting in a controlled trajectory. Therefore, the

method used for controlling chaos in our experiments is

essentially similar to the OGY method. The difference
between these two methods is in the procedure to find the

amplitude p* of the parameter variation necessary to
achieve control of chaos. In contrast to the OGY
method, in our experiments p is determined experimen-

tally by observing the behavior of the chaotic system's

response to the increasing modulation magnitude and

scanning the modulation frequency. In the undriven

chaotic plasma system, it may be more convenient to
tame the autonomously chaotic dynamics with weak

periodic perturbations. When a natural periodicity
characteristic of the system is found and the perturbation
magnitude is chosen appropriately, one may stabilize one

of the unstable orbits in the chaotic attractor so as to
suppress chaos. Furthermore, this simple control method
has been applied to the hyperchaotic attractor indicated

by two positive Lyapunov exponents; we have never no-

ticed tongues as mentioned above unless modulation am-

plitude is much increased so the system has been greatly
changed. It is demonstrated that the control method
presented here can be applied to "weakly" chaotic attrac-
tor.

In conclusion, we have demonstrated experimentally
that a small periodic perturbation on an accessible pa-
rameter of the system can be effectively used to suppress

the undriven chaos in a dc discharge plasma system
without any a priori knowledge of the models or the

equations governing the dynamics. The power spectra,
information dimension, and Lyapunov exponent spectra
quantitatively confirm our experimental results. The re-
sults reported here indicate that this control technique
may be relevant to the controlling of plasma turbulence.
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