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The Euclidean black hole has topology ®2 x S~2. It is shown that, in Einstein’s theory, the
deficit angle of a cusp at any point in ®? and the area of the S~ 2 are canonical conjugates. The
black hole entropy emerges as the Euler class of a small disk centefed at the horizon multiplied
by the area of the S?~2 there. These results are obtained through dimensional continuation of
the Gauss-Bonnet theorem. The extension to the most general action yielding second order field
equations for the metric in any spacetime dimension is given.
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The purpose of this Letter is to point out that the black
hole entropy may be derived in a simple manner if one
regards the Euclidean Hilbert action for the gravitational
field as the dimensional continuation of a topological in-
variant, the Euler class. Then, the dimensional continua-
tion of the Gauss-Bonnet theorem shows that the entropy
itself is the continuation of the Euler class of a small disk
centered at the horizon.

The Euclidean spacetimes admitted in the action prin-
ciple will have the topology ®2 x S%=2. We allow for
cusps at any point in ®2. The deficit angle of a cusp at
a given point turns out to be canonically conjugate to
the area of the S%2 at that point. In particular, the
entropy is canonically conjugate to the deficit angle at
the horizon. The condition for zero deficit angle emerges
from extremizing the action with respect to the area of
the S4-2.

The results apply also to the natural generalization of
the Hilbert action to higher spacetime dimensions, the
Lovelock action [1]. This action, which keeps the field
equations for the metric of second order and hence does
not change the degrees of freedom, can also be under-
stood in terms of dimensional continuation [2,3]. For a
spacetime of dimension d, the generalized action contains
the dimensionally continued Euler classes of all even di-
mensions 2p < d. Each such term gives rise to an entropy
[4] that is proportional to a dimensional continuation of
the Euler class of dimension 2p — 2. Thus, the Hilbert
action with a cosmological constant may be thought of
as coming from dimensions 2p = 2 and 2p = 0, respec-
tively. The entropy comes then from 2p = 0. (We define
the Euler class for a space of dimension zero as unity and
that for a space of negative dimension as zero.)

We will first recall the Gauss-Bonnet theorem and
bring out its relationship with the Hilbert action for the
gravitational field. The extension to the Lovelock theory
will be indicated at the end.

If one considers a two-dimensional manifold M with
boundary dM, the Gauss-Bonnet theorem reads

1
3 [ VI Rds — [ JGKdz = amx(M). (1)
M oM

The integer x(M) on the right-hand side of (1) is the
Euler number of M and depends solely on its topology.
One has x =1 for a disk and x = 0 for an annulus. We
will refer to the sum of integrals appearing on the left
side of (1) as the Euler class of M. The Gauss-Bonnet
theorem then says that the Euler class of M is equal to
27 times its Euler number.

If one varies the integral over M in (1) one finds, by
virtue of the Bianchi identity, that the piece coming from
the variation of the Riemann tensor yields a surface term.
This surface term exactly cancels (he variation of the
surface integral appearing in the Euler class. On the
other hand, because of the special algebraic properties
of the Riemann tensor in two spacetime dimensions, the
contribution of the variation of ,/gg*¥ is identically zero.
This is a poor man’s way to put into evidence that the
Euler class is “a topological invariant,” the real work is
to show that the actual value of the sum of integrals is
2mwx.

Now, the Hilbert action for the gravitational field in d
Euclidean spacetime dimensions may be written as

1
IH = —/ \/ggmlRauauddz -/ \/ngd—lx. (2)
2J/m oM

[One integrates exp(+I) in the Euclidean path integral.]
This action has the same form as the Euler class of two
dimensions, with the change that now the integrals, and
the geometric expressions appearing in them, refer to a
spacetime of dimension d > 2. For this reason, one says
that the Hilbert action is the dimensional continuation
of the Euler class of two dimensions. After dimensional
continuation, the Euler class ceases to be a topological
invariant. While it is still true that the variation of the
Riemann tensor in (2) yields a surface term, this sur-
face term no longer cancels the variation of the integral
of the extrinsic curvature. Rather, the sum of the two
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variations vanishes only when the intrinsic geometry of
the boundary is held fixed. Moreover, the contribution
to the variation coming from ,/gg"" gives the Einstein
tensor, which is no longer identically zero, and hence the
demand that it vanishes is not empty but gives the Ein-
stein equations.

There is another action, which differs from the Iy by
boundary terms. It is the canonical action

Io = / (n9g:;; — NH — N'H,). (3)

When one studies black holes I¢ has a significant ad-
vantage over the Hilbert action. It vanishes on the black
hole due to the constraint equations H = 0 = H; and the
time independence of the spatial metric. The black hole
entropy and its relation with the Gauss-Bonnet theorem
will arise through the difference between the Hilbert and
the canonical actions.

In the Euclidean formalism for black holes, it is use-
ful to introduce a polar system of coordinates in the 2
factor of 2 x 842, The reason is that the black hole
will have a Killing vector field—the Killing time—whose
orbits are circles centered at the horizon. But, it should
be stressed that the discussion that follows is valid for
a system of polar coordinates centered anywhere in R2.
Indeed the Killing vector exists only on the extremum
and not for a generic spacetime admitted in the action
principle.

Take now a polar angle in R? as the time variable in
a Hamiltonian analysis. An initial surface of time ¢; and
a final surface of time t; will meet at the origin, which
is a fixed point of the time vector field. There is nothing
wrong with the two surfaces intersecting. The Hamilto-
nian formalism can handle that. Next, divide ®2 into a
small disk D, of radius € around the origin, and an an-
nulus of inner radius € and outer radius that will tend
to infinity. Analysis of the boundary terms—which will
not be given here—shows that, in the limit ¢ — 0, the
Hilbert action for the disk and the canonical action differ
only by a local surface integral at 7 = co. Thus we have

Iy = lim I [De x S 4 Ic + Boo. (4)

Here I¢ is the canonical action (3) for the annulus in the
limit € — 0.

The boundary term B, which need not be explicitly
written, appears because of the different boundary con-
ditions at infinity for /g and Ic. Indeed, as stated above,
the Hilbert action (2) needs the intrinsic geometry of the
boundary at r = 0o to be fixed. On the other hand, for
the Hamiltonian action (3) one must fix at infinity the
mass M and angular momentum J—with a precise rate
of falloff for the fields (see, for example, [5]). If instead
of M one fixes its conjugate, the asymptotic Killing time
difference to — t; = 3, while still keeping J fixed, one
must substract SM from (3).
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The contribution at the origin in (4) appears precisely
because there is no boundary there in the topological
sense. Indeed, the canonical action introduces an addi-
tional structure, the time vector field which has a fixed
point at the origin. This makes it not covariant. The
boundary term is brought in in order to restore covari-
ance.

Thus, if we drop B, we obtain the improved covariant
action,

I = lim Iy [De x S?) 4 I, (5)

which is suited for fixing M and J at infinity. The action
(5) differs from expression (4) only by a local surface
term at infinity due to the different boundary condition
there, and it is therefore as covariant as (2). Furthermore,
(5) is finite on the black hole and thus it is “already
regularized.” [The Hilbert action (2) is infinite on the
black hole because By, diverges.]

A short analysis reveals that the first term in (5) fac-
torizes into the product of the Euler class (1) for D, and
the area of the S¢~2 at the origin. Thus one finds

31_1}(1) Ig|[D. x S%7?] = 2r(area of Sd_2)0rigin. (6)

It is of interest to allow in (5) for a “cusp of deficit
angle o” at the origin of ®2 [6]. This means that the value
of the two-dimensional integral in the Euler class (1) is
equal to a, whereas the line integral over the boundary
has the value 2w — . The full action (5) depends on a.
This is most directly seen by recalling that, as stated in
(4), the action (5) differs from the Hilbert action (2) by
a local boundary term at infinity. As a consequence, if
the area of the S=2 at the cusp is varied, one finds that
the action changes by

81 = ab(area of S4~2 at cusp). (7)

Equation (7) shows that the deficit angle, which is a
property of the intrinsic Riemannian geometry of R?, is
canonically conjugate to the area of the S%2 attached
to that point—an extrinsic property. (One may make
the deficit angle to be a function of the location on the
S9-2, then one finds that it is conjugate to the local area
element on S%-2 [7].)

Observe that one could incorrectly believe, due to (6),
that the action (5) (and hence its variation) is indepen-
dent of the deficit angle . What happens is that there is
a boundary term in the variation of the canonical action,
coming from space derivatives in H, which cancels the
variation of the surface term in the Euler class leaving
(7) as the net change [8].

As shown by (6), the actions (3) and (5) differ by a
contact transformation which depends only on the in-
trinsic geometry of the S¢~2 at the origin. Therefore, if
that geometry were held fixed, both actions would cor-
rectly yield Einstein’s equations and, on this basis, they
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would be equally good. However, in the calculation of
the partition function one must integrate over all “closed
Euclidean histories” keeping fixed only the data at infin-
ity. This means that in the semiclassical approximation
one must extremize with respect to the geometry of the
S%-2 at the origin, instead of keeping it fixed.

For that problem, the improved action (5) and the
canonical action (4) are not equivalent. The black hole
will be an extremum for the covariant action (5), because
the demand that the variation (7) vanishes yields o = 0
at all points, which is the condition for the manifold to
be metrically smooth. This is a property that the Eu-
clidean black hole indeed posseses, since the empty space
Einstein equations are obeyed everywhere. On the other
hand, the demand that the canonical action should have
an extremum with respect to variations of the area of the
892 would yield a = 27, which would introduce a sort
of source at the origin.

Thus, adding the Hilbert action for a small disk around
the origin to the canonical action restores covariance
without introducing sources. This addition ensures that
the fixed point can be located anywhere. This must be
so since the manifold has only one boundary, that at in-
finity.

Consider now the value of the action on the extremum.
Then it is convenient to take the polar angle to be the
Killing time, for—in that case—the spatial geometry g;;
is time independent. Furthermore, since the Hamiltonian
contraints H = H; = 0 hold on the extremum, the value
of the improved action (5) for the black hole is just the
contribution of the disk at the horizon.

Since in (5) M and J are fixed, which corresponds to
the microcanonical ensemble, we learn that the entropy
is given by

S = 2rr(area of S ?)porizon- (8)

This is the standard expression for the black hole entropy
in Einstein’s theory. Note that the overall factor in front
of the area, usually quoted as one-fourth in units where
Newton’s constant is unity, is really the Euler class of the
two-dimensional disk.

It is important to point out here that the action (5) as
it stands is not only appropriate for the partition but also
for the transition amplitude from t; to ¢2. This is because
the partition function is the trace of the propagation am-
plitude. Equation (6) then shows that the integration
measure over the horizon geometries has a contribution
of classical order that appears as the difference between
the Hilbert and the canonical action for a disk of vanish-
ing radius. [It should be noted that the Hilbert action
for the wedge between t; and t; is given by Iy (wedge) =
Ic + m(area of S%2 at horizon) + B, + 7(area of S%~2
at infinity). It differs from (5) and is not the correct ac-
tion for the wedge. This means that, after dimensional
continuation, the Hilbert action for a “full turn wedge”
is not the same as that for a disk. Before dimensional

continuation the S¢~2 factors are absent and the action
is the same for both configurations.] As a consequence,
the transition amplitude obeys an extended Wheeler-De
Witt equation. This problem is discussed elsewhere [7].

The preceding analysis goes through step by step for
the Lovelock theory [1]. The analog of the Hilbert action
given by (2) is

(0%
L=} myUi+5), (9)
2p<d

with

ﬁ ﬂ _
1= [ Vel miRgE Rt (0)
(Here the totally antisymmetrized Kronecker symbol is
normalized so that it takes the values 0, £+1.)
The boundary term BP? is the generalization of the in-

tegrated trace of the extrinsic curvature in (2). It is given
by

-2

BP
d—2p Jom

dd_ll‘g,‘jﬂ'g’). (11)
Here 71'3;> is the contribution of (10) to the momentum
canonically conjugate to the metric g;; of M. It may
be expressed as a function of the intrinsic and extrinsic
curvatures of the boundary [3].

For Euclidean black holes in d-spacetime dimensions,
again with topology ®% x S%~2 [9], the action (5) now
reads

I'=lim Ip[De x S42 + I, (12)
and the entropy becomes
S = lim I [D x §%77). (13)
€—

The limit (13) factorizes into the Euler class of the disk,
equal to 27, and a sum of dimensional continuations to

892 of the Euler classes of all even dimensions below
d—-2,

[
S=2 ¥ o ____gr1, (14)
2= PEIR(p - D)

with

5= [ vasl o R, o R, 4, (1)
where the integral is taken over the (d — 2)-sphere at the
horizon.

The Hilbert action corresponds to 2p = 2 and the cor-
responding entropy is 27 times the area. The cosmolog-
ical constant term corresponds to 2p = 0 and gives no
contribution to the entropy. Expression (14) was first
given in [4].
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