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New Type of Gap Soliton in a Coupled Korteweg —de Vries Wave System
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We show that, in a narrow gap in the spectrum of two linearly coupled Korteweg —de Vries
equations with opposite signs of the dispersion coeKcient, a two-parameter family of solitons of a
novel type may exist. These are envelope solitons with decaying oscillating tails, which are radically
different from the gap solitons previously known in nonlinear optics. In particular, they may become
singular at some value of the velocity, and degenerate into algebraic solitons in another special case.
It is demonstrated that gap solitons of the same type may also exist in a nonlinear optical system
consisting of focusing and defocusing tunnel-coupled planar lightguides.

PACS numbers: 03.40.Kf, 47.35.+i

Recently, a great deal of attention has been directed
to the so-called gap solitons (GS) in systems of vari-
ous physical origins [1,2). The GS exist in systems in

which the spectrum of linear waves contains a forbidden

gap, so that placing a soliton inside this gap may pre-
vent it from radiative decay into linear oscillatory waves.
Usually GS are sought for in systems of the nonlinear
Schrodinger (Nl S) type, a well-known example being the
GS in a nonlinear optical system (fiber or planar wave-

guide) with a periodic grating [1]: two counterpropa-
gating waves are linearly coupled by the grating-induced
Bragg scattering, which gives rise to an effective disper-
sion in the system (even when the proper dispersion of
the waveguide is neglected), necessary for supporting the
soliton through competition with nonlinearity. Similarly,
GS may be realized in optical systems of another type,
viz. , in a pair of parallel tunnel-coupled nonlinear fibers
or planar waveguides. In fibers the GS exist in the tem-
poral domain, while in the planar systems they are in
the spatial domain (it is relevant to note here the experi-
mental work of Winful, Zamir, and Feldman [1]). In this
work, we aim to demonstrate a new type of GS, which can
exist in coupled wave systems with oppositely signed dis-
persions. A weak linear coupling drastically changes the
soliton spectrum of the system: it kills the usual solitons
existing due to the nonlinearity-dispersion competition
in each subsystem in the absence of the coupling, and si-
multaneously it opens a narrow gap in the system's linear
spectrum. Solitons of a new type may exist in this gap.
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where —b, is the relative group velocity of the linear long
waves in the two subsystems, cr is the relative dispersion
coefficient (here we will consider only the case n & 0,
corresponding to the oppositely signed dispersions in the
subsystems), A is a small coupling constant, while P is
an independent parameter [here we will consider only
the case p & 0 corresponding to the situation when the
system (1) is linearly stable]. The KdV equation [i.e. ,

either (la) or (lb) when A = 0] is well known to describe
solitary waves with exponentially decaying tails, and oc-
curs in many physical contexts. Coupled Kdv equations
occur whenever the underlying physical system contains
two wave modes with nearly coincident linear long-wave
phase speeds [3,4]. In the context of internal gravity
waves in the absence of any basic shear flow [3] the cou-
pling between the two subsystems is through nonlinear
terms and linear dispersive terms (i.e. , with third deriva-

This general problem will be considered here in terms
of a system of two linearly coupled Korteweg —de Vries

(KdV) equations. It will be shown as well that, essen-

tially the same new type of GS may occur in the optical
system based on a pair of tunnel-coupled focusing and
defocusing planar dispersionless lightguides.

The system of coupled KdV equations is
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k = kko —= k6'i (1+o.)
c= c{ = —b(1+n)

(2)

Note that here we must choose 6 ) 0. When the cou-

pling is switched on, it prevents the crossing. One of the
two generic types of the dispersion curve generated by
the small coupling in the vicinity of a former crossing
point is shown in Fig. 1 for the case aP ) 0. Elemen-
tary analysis of the dispersion relation following from the
linearized form of (1) reveals that the gap shown in Fig.
1 exists, provided that eiP ) 0, in the interval of the
velocities

]c —c
]
( 2/o, P(o, +1) ']Ai. (3)

tives) rather than the linear first order derivative terms
in (1). However, coupling through linear dispersive terms
will produce similar results to those described here, al-

though we note that coupling through nonlinear terms
alone presents some interesting questions (see [5]) which

we shall address in future studies. In the presence of an

underlying basic shear flow we can generally expect lin-

ear coupling terms with erst derivatives to occur, as in

(1) [4]. Before proceeding we note that the system (1) is

Hamiltonian.
The spectrum for systems of KdV type is character-

ized by the dependence of the phase velocity c upon the
wave number k. At A = 0 the spectra of the uncoupled
subsystems are c{")= —kz, c{")= —6 + elk, and they
cross at the points

solitons existing in the uncoupled subsystems will in-

evitably be destroyed, however weak the coupling (al-
though the time of the radiative decay produced by the
weak coupling may be very large [6]).

To analyze the dynamics of the system inside the spec-
tral gap, we expand the wave fields as follows:

U ( t) iko{z ci ~—t) + U ( t) 2iko(x c~—~t)

+Up(z, t) + c.c. ,

V ( t) eiko{z c -i) + V ( t) 2iko

+Vp(x, t) + c.c. ,

(4a)

where all the amplitudes U and V are assumed small and

slowly varying. Substituting the expansion (4) into (1),
we regard the smallness produced by difFerentiation of
the slowly varying functions to be of the same order as
the coupling constant A. The squared amplitudes ]Ui]z
and ]Vi] are also assumed to be of the order of A.

Equating coefficients in front of the second harmon-

ics, it is straightforward to determine the corresponding
amplitudes as follows,

U2 = —s(1+o)A 'U, , Vz = s(1+n)(o.A) 'V,'.
(5)

Unlike these second-harmonic amplitudes, the zeroth-
harmonic amplitudes cannot be obtained explicitly at
this stage [7]. Using (5), we cast the system of equations
for the remaining amplitudes into the following form:

Equality holds in (3) at the turning points of the dis-

persion curve where dc/dk = 0. In the opposite case,
eiP ( 0, the gap does not exist, and one gets the other
generic dispersion curve in the vicinity of a former cross-

ing point. However, in this case the spectrum is unstable
in a range of wave numbers centered about kkp, and
the instability bubble is generated at the points where

]dc/dk] —+ oo. In the sequel we assume that P ) 0.
Only solitons with velocities belonging to the interval

(3) have a chance to survive in the coupled system; all

others will decay into radiation due to resonance with
linear oscillatory waves. This means that the usual KdV

0 . ~ 1 ~ ~
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where we use the notation

( = a-'x+ t,1+&
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FIG. 1. The spectrum for linear waves in the presence of
weak coupling in the KdV system with opposite dispersions.

Vi = [6cka/(1+ ei)kp] ~ V,

M = 2kpUp, N:—2kpVp, and e = ~nkpA, p = P/a. Note
that to this order in the small parameter A (or e), there
are no dispersive terms with second spatial derivatives
in (6) and (7). Nevertheless, an effective dispersion is

produced by the linear coupling terms in the system (6).
Apart from the terms involving the zeroth-harmonic

amplitudes, Eqs. (6) seem formally similar to those ob-

tained in [1] for the linearly coupled dispersionless nonlin-

ear optical systems with a gap. The only essential differ-

ence is in the opposite signs in front of the cubic terms
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(10a)U((, t) = e ' 'A(( —wt),

V((, t) = e ' 'B(( —wt),

in (6a) and (6b), which are produced in turn through

(5) by the opposite linear dispersions in (la) and (lb).
This difference proves to be crucial, radically changing
the properties of the GS in the present system.

A simplified system of the same type, viz. , just (6)
without the terms coupling them to the zeroth-harmonic
amplitudes M and N, can be obtained if one considers
a pair of parallel tunnel-coupled nonlinear planar light-
guides, one of which is focusing and another defocusing.
In this case, t and ( represent, respectively, the propaga-
tion coordinate and the transverse one, and the opposite
signs in front of t
be produced by di
beams.

A soliton solutio
the form

(lob)

M((, t) = M(( —wt), N((, t) = N(( —wt), (11)

where the frequency o is assumed to be of order e, while
the velocity m may have an arbitrary order of magnitude.
Insertion of (10) into (7) allows us to obtain the variables
M and X as follows:

M = 6[2 —n —(n+1)w] iAi, (12)
he ( derivatives in (6a) and (6b) can
fferent orientations of the two plane N = —6n[2n —1+ (n+ l)w]

At last, substituting (10) into (6) and making use of (12)
n to (6) and (7) is now looked for in brings us to the following system of ordinary difFeren-

tial equations determining the possible soliton (and more
general) solutions:

—ioA —(1+w)A' —i(1+n)(1+ w)[2 —n —(1+n)w] iAi A = —ieB,

i o B + (1——w) 8' + i(1 + n) (1 —w) [2n —1 + (n + 1)w] i Bi B = i peA, — (13b)

A = gl —wRe'~, B = gp(1+ w)Re'~, (14)

R = iWi '(1 —0 ) [2cosh (Ql —02z)
—(1 —sgnW 0)] (15a)

z—:~pe(1 —w )
'/ (( —wt),

where 0 = [p(1 —w )] / e o, and

1 (1 2) —1/2 —1 —1/2
Q Q

—1

(15b)

(16)

(17a)

Qi = (1 + n) (1 —w )[(1 —p) (w —2) + (1 + p) w]

+3(2 —n)(1 —w) + 3pn(1 —2n)(1+ w), (17b)

Q2 = [2 —n —(1+n)w][1 —2n —(1+n)w]. (17c)

We do not display here an expression for the net phase
P+ Q, as it is not needed here The structu. re of the
soliton described by (14) to (16) is formally similar to the
GS first obtained by Aceves and Wabnitz [1], although
of course the context here is different.

In general the expression for the coefBcient W may
vanish whenever Qi vanishes. Since Qi (17b) is a quartic
polynomial in to, there is the possibility that this could
occur for four real values of m, provided of course that
these all lie in the allowed range m2 ( l. In the particular
case p = 1, Qi reduces to a cubic polynomial in w, and
it can be shown that Qi vanishes for only one real value
of w which lies in the allowed range only when 1/2 (

the prime standing for difFerentiation in ( —wt. Further
[

analysis demonstrates that (13) have a localized solution
(i.e. , a soliton) for w ( 1. After some algebra, this
solution can be found in the following form:

n ( 2. If also o. = 1, then this special value of m is zero.
At these possible special values of w the amplitude of
the soliton diverges [see (15a)], which implies that more
terms should be taken into account in the expansion (4).
On the other hand, the amplitude of the soliton vanishes
at the two values of w for which the denominator Q2
(17c) of the expression (17a) for W is equal to zero, i.e. ,

at w = (1 —2n)/(1 + n) and at w = (2 —n)/(1+ n).
These correspond to resonances with the zero-harmonic
terms, and again the present theory fails.

As was mentioned above, (6) without the coupling
terms to the zero-harmonic amplitudes M and N are
also of interest as a possible model of coupled nonlinear
focusing and defocusing planar lightguides. For this sys-
tem, the soliton solution takes the same form as above
with the only difference that the parameter W is now

given by the expression

'(1 — ') "'[(&—1)(1+ ')
+2(p+ 1)w] . (18)

In the general case (unless p = 1), the expression (18)
also vanishes at two special values of w.

The soliton solution contains two essential parameters:
the frequency 0 and the velocity m, which is typical for
envelope solitons. Indeed, coming back to the expansion
(4) and taking into account that, according to (16), an
effective width of the soliton scales with e i, we con-
clude that the solution given by (14) and (15) is, actu-
ally, a typical envelope soliton with a large number of
oscillations of the carrier wave fields u and v inside it.
Recently, a number of studies have been devoted to anal-
ysis of envelope solitons with weakly damped oscillating
tails for capillary-gravity waves [8]. These solitons are
essentially NLS solitons for those turning points on the
linear dispersion curve where the phase and group veloc-
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ities are equal, so that the carrier and envelope have the
same speeds. The solitons obtained here belong to the
same class, but dier in that the linear dispersion which
balances the nonlinearity derives here from the cross cou-
pling of the two subsystems rather than from the linear
second-order derivative terms in the NLS equation. They
also dier in that here the velocity gap in which they can
exist [see (3)] is bounded both above and below, and
the gap width is proportional to the small parameter A,

whereas for the above-mentioned capillary-gravity waves,
the only constraint on the soliton velocity is that it be
less than (greater than) the minimum (maximum) phase
velocity of the linear spectrum.

As one sees from (15), the soliton solution exists in the
range of the frequencies A~ & 1. In the general case, the
soliton is localized exponentially. However, its structure
drastically changes in the limiting case 02 = 1. In the
case 0 = sgnR the soliton simply vanishes. However, in
the limiting case 0 = —sgnW it becomes an algebraic,
i.e. , weakly localized, soliton. In this limit, (15) degener-
ates into, for W & 0 and 0 = —1,

R' = 2W '(1+4z') '

tan[2i(P —g)] = -2z.

If 8' ( 0, we obtain a similar limit at 0 = 1:

(19a)

(19b)

R = 2iWi (1+4z )

«n[2(4-@)] = -(2z) '

(20a)

(20b)

The existence of this weakly localized soliton in the fam-

ily of soliton solutions is a drastic difference from the
previously studied type of the GS which did not have
this property.

The envelope soliton has a fully stationary form (and
then it has a chance to correspond to an exact soliton
solution) if the velocity of the envelope exactly coincides
with the phase velocity of the carrier wave [8]. The latter
velocity may be slightly different from c(o) [see (2)] due

to the presence of the small frequency cr in (10), and of
a small additional wave number bk, which according to
(10), may be defined as the limit value of P' (or g') at
infinity. It is easy to find directly from (10) that bk =
idio (1 —mz) i. Finally, with regard to the fact that cr is
small, we find the following corrected value for the phase
velocity of the carrier wave:.= (.(')k. + )~(k. +~k)

= c + (cr/ko)[1 —c )w(1 —ii~ ) ]. (21)

As concerns the envelope's full velocity, it follows from
(16) and (8) that in the original variables (x, t), it is [ic—
(2 —n)(l + ci) i]A. This expression should be equated
to (21) to find the value of ur at which we have the fully
stationary soliton. At o. = 0 this happens at

(22)

A nonzero value of cr will slightly shift the value (22).
Inserting the value (22) into the expression (17) or (18),

we notice that the coefBcient 8' does not generally van-

ish at this value of the velocity; i.e., in the general case
we indeed get a well-de6ned solution for the stationary
soliton. However, in the case o. = p = 1, when the two
KdV subsystems are fully symmetric with respect to each
other, the value ui = ui, = 0 [from (22)] gives W = 0. So,
in this symmetric case the shape of the stationary soli-
ton remains unknown. A nonzero value of cr would make
W finite, but on substituting this into (15a), we obtain
the soliton's amplitude in which the small parameter c is

nullified by a small value of cr, so that we have a finite

amplitude for which, strictly speaking, the expansion (4)
is not legitimate. Nevertheless, it is natural to expect
that the soliton's amplitude should be anomalously large
in this fully symmetric case. To clarify this issue, nu-

merical simulations are necessary and we are currently
investigating this.

It might be expected that the soliton whose envelope
is moving at a velocity different from that of the car-
rier wave will slowly change its velocity due to a weak
emission of radiation (this process is beyond the frame-
work of the asymptotic procedure employed in this work),
and will eventually attain the value of the velocity corre-
sponding to the stationary soliton. A full consideration
of the nonstationary behavior of the envelope soliton also
requires further numerical simulations.

In conclusion, we have found a new type of gap soliton
which we believe is generic. Although our analysis here is

based on the coupled KdV system (1), it seems clear that
the essential ingredient is the spectral gap shown in Fig.
1, and it is well known that this is one of the two generic
possibilities when two subsystems have coincident phase
speeds when uncoupled, and are then coupled through
a linear mechanism. In this context we mention for in-

stance that there have been found recently some particu-
lar models of periodic mechanical media which have such

a narrow gap in the spectrum of linear acoustic waves

[9]. In this case, our results imply the possibility of the
existence of an acoustic gap soliton.
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