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Spin-Flip Avalanches and Dynamics of First Order
Phase Transitions

In a recent Letter, Sethna er al. [1] used the zero-
temperature random-field Ising model to study first order
phase transitions. They found that on decreasing the dis-
order, a critical value was found at which a jump in the
magnetization first occurred. The universal behavior at
this critical point was studied using mean-field theory and
simulations. The relationship between equilibrium and
dynamics was not clarified. Here, we point out the fol-
lowing:

(1) The finite range approach [Eq. (3)] presented in
Ref. [1] is the same as an equilibrium analysis [2]. Such
an approach predicts that there are continuous random-
field distributions [3] that nevertheless do not yield a crit-
ical point at zero temperature and thus will show no in-
teresting scaling behavior.

(2) The three-dimensional simulations are nonequilib-
rium dynamical studies. The exponents found in D=3
nevertheless are similar to the values one finds in equilib-
rium [4].

(3) One may consider the equilibrium behavior of a
system (not necessarily random) between its lower and
upper critical dimensions close to its critical point and
based on simple scaling analysis work out relationships
between the exponents o and 7 introduced in Ref. [1] to
characterize the avalanche distribution at the critical

point:
D(s,h,r)=s "D+ (s|r|"e,n/|r|?%) 1)

with h=H—H, and r=(R.— R)/R.. While avalanches
are clearly defined at zero temperature, here we envision
working with a finite resolution in h or a finite size
system. Noting that the characteristic avalanche s,
=~ |r] ~"% and assuming a correlation length &= |r| ",
one finds s, zé'/"", so that 1/ve may be identified with
the fractal dimension dy of the largest avalanche near
r=0 and h=0. This immediately implies [5] that
1/vo=d— B/v or that

1/o=dv—8. 2)

Also noting that the mean avalanche (s) = dM/dh, where
M is the magnetization, one obtains

2—1=B(—1)/(dv—PB)=cB(5—1). (3)

(4) We note the curious fact that their d=3 simula-
tions, while using a specific dynamics and being out of
equilibrium, nevertheless yield exponents in good agree-
ment with those obtained from equilibrium considerations
[6]. For example, the value of 1/o, derived from Eq. (2)

946

and the numerical results presented in Ref. [1] for v and
B, is 2.87 to be compared with their numerical estimate of
2.9+0.15. They consider three inequalities among the
exponents: dv= B(1+6) is consistent with a value of the
zero-temperature scaling exponent for the length depen-
dence of the energy sensitivity to changes in boundary
conditions, 8= 0.81, and a breakdown of hyperscaling as-
sociated with a zero-temperature fixed point [7] (d —8)v
=2—a; 1/ov=d is equivalent to the observation d; < d,
and 2—t = oB(8—1), which they find as an equality, is
our Eq. (3).
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