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"Anomalous Fixed Point Behavior" of Tvvo Kondo Impurities: A Reexamination
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4'e consider the existence of "anomalous fixed point behavior" for the Kondo two-impurity Hamil-

tonian. This "anomalous" behavior is predicted by calculations which use the "energy-independent cou-
pling constants" (ECC) approximation. Using well-controlled quantum Monte Carlo methods without
the ECC approximation, we find no evidence for "anomalous" behavior. %e then show that the ECC
approximation is, in general, either inconsistent or uninteresting. These results together strongly suggest
that the predicted "anomalous" behavior of two Kondo impurities is simply the result of an unphysical
approximation rather than an intrinsic property of the model itself.

PACS numbers: 75.20.Hr, 75.30.Hx, 75.30.Mb

There has been great interest in recent years in the

properties of two interacting magnetic impurities in a
metal [1-11]. This is largely because the understanding

of two such impurities is a first step towards understand-

ing the magnetic properties of the "heavy fermion" ma-

terials [12,13], materials which appear to consist of a lat-

tice of magnetic moments interacting with a conduction

band. In the two-impurity system, there are two effects
which can compete against each other: The Kondo effect

[141 and the RKKY interaction [15]. The RKKY in-

teraction at low temperatures will by itself tend to lock

the two-impurity spins into a singlet or a triplet, depend-

ing on the sign of the RKKY coupling constant. The
Kondo effect involves the screening of the individual im-

purity spins by the conduction electron spins, with the ac-

companying formation of a many-body (impurity)-(con-
duction-electron) singlet. The competition between the

two effects arises because the Kondo effect can inhibit the

development of RKKY spin correlations between the im-

purities. This general competition may offer an explana-

tion for the different varieties of magnetic behavior ob-

served in the heavy fermion materials [12,13,16).
Earlier theoretical work [1-5]on the two-impurity sys-

tem, for two spin- —,
' impurities with an antiferromagnetic

RKKY interaction, qualitatively supported the above pic-

ture of competition between the RKKY interaction and

the Kondo effect. However, numerical renormalization

group [6] (NRG) and "exact critical theory" [10] calcu-

lations predicted in addition an unexpected "anomalous

fixed point" with striking behavior: Certain normally

finite quantities diverge as the temperature T 0.
Well-controlled quantum Monte Carlo simulations [8],
however, have so far given no indication of any such

divergence. In this Letter, we explore the reasons for this

discrepancy.
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Ho refers to the conduction electron band and HI to the
interactions between the spins and the conduction elec-
trons. Specifically, S is the dimensionality of the system,
s = t, J refers to spin, j 1,2 refers to the two impurities,
[pit,„vs, , ] -b, ,b(k -k'),

S,(R, ) =gcjt(-,' rp„)cp (4)
$,$

is the normalized conduction electron spin at Rj, with

c,, =rl '" d~ke'""JV~, , (5)

where q= f1 k so that [cjt„cj',] =b, , b~,~, the e(k)'s are
the conduction electron energy levels, the S~'s are the im-

purity spins, and J is the Kondo coupling constant. For
small pJ, where p is the total conduction electron density
of states at the Fermi level (spin f plus spin j), the Kon-
do temperature Tlr at which Kondo screening occurs is

given by [14]

~D(pJ) ll2e —i/PJ (6)

where D is here the conduction electron bandwidth. To
lowest order in pJ, the RKKY coupling constant $, asso-
ciated with the eA'ective Hamiltonian

H,g =SS].S2

is given by [15]

The model which we consider is the two-impurity
spin- —,

' Kondo model [1-11]
H =Hp+HI, (1)

where
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where P denotes "principa1 part" and eF is the Fermi energy.
Setting Ri = —R/2 and R2=R/2, one can rewrite the interaction term Hr of the Hamiltonian of Eq. (1) as

r

dE gp(E) ilrp~, (E) dE'gp (E') Vrp , (E'), . .
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Here, p 0, 1,

g (E)=' d kb[E —e(k)][h (k)]''
l(2
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k Rhp(k) =cos
2

and

k R
h

~ (k) =sin
2
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yp, (E) i~ [gal(E)] ') d k 8[E —e(k)]hp(k)y~. (13)

e(k) =e( —k) is assumed so that [y~~, (E),y~; (E)]
=b„bzzb(E —E'), with yp, (E) and y~, (E) referring,
respectively, to "even" and "odd" conduction electron
channels [3,6, 17].

The numerical renormalization group, originally ap-
plied by Wilson to the Kondo single-impurity problem
[14], was used to study the two-impurity Hamiltonian
with Ht in the form of Eqs. (9)-(13) with the approxi-
mation of ignoring the energy dependence of gp(E) and
g~(E); i.e., the condition

gp(E) =Qp (i4)
(p 0, 1) was set, with each Q~ independent of E. This is
the "energy-independent coupling constants" (ECC) ap-
proximation [3,6, 17], which is made under the assump-
tion that the energy dependence of the g~(E)'s corre-
sponds only to "irrelevant operators" which have no effect
on the low-temperature physics. Specifically, the par-
ticle-hole symmetric case of the Kondo two-impurity
Hamiltonian was studied [6,17]. An unexpected "anoma-
lous fixed point" was found [6,17] at 2/Ttt =2.2 (anti-
ferromagnetic RKKY coupling) at which the impurity
specific heat coefficient y and staggered susceptibility g,
diverged as temperature T 0. Associated with these
divergences was a ground state value of (S~ Sz)= —0.25. This NRG "fixed point" was characterized as
a phase transition between the qualitatively different
y/Ttt —~ and J/Ttt ~ behaviors [18].

Again using the ECC approximation, the particle-hole
symmetric two-impurity model was studied by combining
the techniques of two-dimensional boundary critical phe-
nomena with the separation of spin and charge degrees of
freedom in a one-dimensional Fermi gas [10]. Using
NRG results as a guide to the appropriate "gluing condi-
tions, " divergences were again found at an "anomalous
fixed point" in the impurity specific heat coe%cient y and
staggered susceptibility g„with g, diverging as ln(T/
Ttt). g, was defined in this latter "exact critical theory"
work [10] as

r P
g, -„,dr([Si(r ) —S2(r )][Si—S2]), (is)

with P I/kttT the inverse temperature [19].
Quantum Monte Carlo (QMC) simulations [2,20]

have also been used to study the Kondo two-impurity

(i6)
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Hamiltonian [8]. There are no uncontrolled approxima-
tions in the algorithm used [8,21]. Specifically, two Kon-

do impurities were studied in a (half-filled) particle-hole
symmetric chain with nearest-neighbor hopping; this

gives dimension S-l and e(k)-( —2t)cos(ka) in Eq.
(2), with t the nearest-neighbor "hopping" integral,
—x/a ~ k & z/a, and a the distance between sites on the
chain. The hopping integral t was set to 2, so that D=2
and p=x '=0.318. At temperatures above T~, there
was no indication of anomalous behavior in the staggered
susceptibility of Eq. (15) for a range of ratios 0.9
&2/Ttt &2.8. It could, however, be argued that the

simulations were not performed at sufficiently low tem-

peratures. We have hence performed lower-temperature
simulations, down to temperatures below the Kondo tem-

perature Ttt. The first of the simulations duplicates
closely the value of (Si S2) = —0.25 observed [6,17] at
the NRG "anomalous fixed point.

" The second corre-
sponds to 2/Ttt=2. 2, with S calculated from Eq. (8)
and Ttt calculated from Eq. (6). The reason for perform-
ing two different QMC simulations is that, for the in-

teraction term of Eqs. (3)-(5), the ECC approximation
does not correspond to any "consistent" band structure
for the desired antiferromagnetic RKKY interaction.
(We comment on this point in more detail later. ) There
was therefore no band structure for us to duplicate in the
QMC simulations. However, given this, we attempt to
match the QMC and NRG parameters as closely as pos-
sible.

In Table I, we show the two QMC and the NRG pa-
rameters. In Fig. 1, we show the normalized staggered
susceptibilities Tttg, versus In(T/Ttt) down to below the
Kondo temperature Ttt. We see no statistically signifi-
cant evidence of unusual behavior. In fact, as shown in

Fig. 2, g, is greatly reduced at low temperatures from
what one would expect from the RKKY effective Hamil-
tonian of Eq. (7), which gives a nondivergent g, 6/S at
T=O. Thus, it appears that the Kondo effect is simply
acting to suppress an already nondivergent RKKY stag-
gered susceptibility.

Recent NRG work on the related Anderson two-

impurity model [22] also found no "anomalous behavior"
when the ECC approximation was not used. However,
the Kondo and Anderson models become equivalent only
in a certain limit [23], and it could be argued that this
limit was not reached in the Anderson NRG work [22].
It is thus necessary to simulate the Kondo two-impurity
system directly, as we have done here.

One might question whether the QMC simulations
used parameters close enough to the critical 7/Ttt value.
Additional NRG computations for the two-impurity An-
derson model using the ECC approximation [24] found a
crossover temperature

25 2 J"
Tco TK' '

4 Tg Tg

where (S/Ttt), is the critical ratio. At T~, divergent be-
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TABLE I. Comparison of quantum Monte Carlo (QMC) atid numerical renormahzation
group (NRG) parameters. The QMC (S~.Sl) value is taken at the Kondo temperature Tg, at
which temperature it appears to have mostly saturated to its ground state value. The NRG
(Si.Sll and S/Ttt values are taken from Fig. l of the first paper of Ref. I6l.

Property

Particle-hole symmetric?
Dimensionality S

e(k) versus k
Bandwidth D
pJ
(Si Sl&

&/Ta

Yes
1

e(k) ( —2t)cos(ka)
2.0

0.23
—0.27 ~ 0.02

2.8

QMC

Yes
g) 1

e(k) -(—2t)cos(ka)
2.0

0.25
—0.23+ 0.02

2.2

Yes
S 3, reduced

formally to S
(indeterminate)

2.0
0.25

—0.27 +' 0.02
2.3

havior which has set in at higher temperatures for a given
J/Ttt will begin to saturate. Our attempts to match both
the correct S/Ttt ratio and the "critical" value of (Sl S2)
should give a Tvo which is a small fraction of Ttt for at
least one of the two QMC parameter sets simulated.
Thus, the observed staggered susceptibilities g„which be-
gin to quench at temperatures above Ttt, are difficult to
explain by our being too distant from the critical J/Ttt
ratio. One might also question whether we have achieved
sufficiently low temperatures. From Fig. 8 of Ref. [171,
we see that the crossover from high temperature to anom-
alous behavior begins to occur at T = Ttt/2. Further, in

the two-channel Kondo impurity model, the well-

established ln(T/Ttt) divergence in the spin susceptibility

Z starts to become visible when T drops below Ttt, as seen
from Bethe ansatz calculations [25]. Thus, it seems im-

probable that signs of an existing In(T/Ttt) divergence of
the two-impurity g„signaling anomalous behavior, would

be missed at the temperatures we simulate. We therefore
believe that the most likely explanation for the apparent

(g )2de(k) 2 kz 1+ sin(kR) (i7)

(g )2 de(k)
2 2

1
sin(kR)

dk kR
(i 8)

which must hold for all values of k. These conditions are
obviously inconsistent, except for the uninteresting cases
R 0 (ferromagnetic RKKY interaction S, in addition to

discrepancy between the (NRG)-(exact critical theory)
and the QMC results is that the predicted anomalous be-
havior is a result of the ECC approximation.

What does the ECC approximation correspond to'?

Suppose that we assume that e(k) e(k) in three dimen-
sions with a spherically symmetric reciprocal space, as
was done in the NRG calculations [17j, and suppose that
we further assume for simplicity that e(k) is a monotoni-

cally increasing function of k (implicit in the NRG calcu-
lations). We then derive from Eqs. (10) and (14) the
conditions

~ \ ~ l ~ ~ ~ l ~ ~ \ ~

X

X ~
X

a ~ ~ ~ I a ~ I ~ ~ ~ l ~ I-1 0 3
ln(T/T„)

FIG. l. Normalized staggered susceptibility Tzg, versus

ln(T/Ttt) for (Sl Sl)= —0.25 (&'s, J~0.728, $~0.0362,
Tg 0.0129) and S/T~ 2.2 (0, J 0.80, 1 0.044, Ttt

0.020). S and Tg are cclnputed from Eqs. (8) and (6), re-

spectively, and all data are for a half-Slled one-dimensional

chain with nearest-neighbor "hopping" integral t 2 . Error
bars are less than or equal to symbol size if not shown.

0 3
ln(T/T„)

FIG. 2. Normalized staggered susceptibility Tgg, versus

ln(T//Ttt), with same symbol conventions as Fig. l. Lines

are predictions from the RKKY effective Hamihonian H~
SSi'Sl of Eq. (7), wl'th S computed from Eq. (8). Dashed

line is for J 0.728 and solid line is for J~O.IO. Error bars

(not shown) are less than or equal to symbol size.
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being unphysical) and R ~ (S 0, spins cannot
"communicate"). We have found similar inconsistencies

using different assumptions. It is possible to change the
coupling of the impurity spins to the conduction electron
spins by changing the form of the h~(k)'s in Eqs. (11)
and (12). The ECC conditions of Eq. (14) can then be
satisfied for particular choices of the hz(k)'s. However,
we have been unable to find any such h~(k)'s for the
particle-hole symmetric case which corresponds to the
physically relevant situation: i.e., two-impurity spins in-

teracting with conduction electron spins which are at
least quasilocalized around the impurities. Further, as
mentioned above, the ECC approximation is inconsistent
when applied to the form of the Kondo two-impurity
model which is actually studied [6,10], the form which is

believed to capture the essential physics of two spin- —,
'

magnetic impurities in a metal and which has been inves-

tigated in prior work [1-11]. As all anomalous fixed

point behavior observed so far in NRG and exact critical
theory calculations are associated with the ECC approxi-
mation, this strongly suggests that the anomalous behav-
ior is the result of an unphysical approximation, rather
than an intrinsic property of the two-impurity Kondo
Hamiltonian itself.

In summary, we have investigated the existence of the
unexpected anomalous fixed point behavior of the two-

impurity Kondo Hamiltonian, seen in numerical renor-
malization group [6] and exact critical theory [10] calcu-
lations which used the energy-independent coupling con-
stants approximation. Using well-controlled quantum
Monte Carlo techniques [8] without the ECC approxima-
tion, we found no evidence for such anomalous behavior
in simulations at temperatures down to below the Kondo
temperature Ttt, the lowest known temperature scale [18]
for this problem. We then showed that the ECC approxi-
mation was in general equivalent to a set of earlier incon-
sistent or uninteresting conditions. All anomalous behav-
ior observed to date is associated with the ECC approxi-
mation. The above results together thus suggest that the
anomalous fixed point behavior predicted for the two-
impurity Kondo Hamiltonian is simply the result of an

unphysical approximation rather than an intrinsic proper-
ty of the model itself.

The bulk of the quantum Monte Carlo data were ob-
tained by using the parallel architecture Intel iPSCl860
at the Sandia Massively Parallel Computing Research
Laboratory, which allowed us to reach lower tempera-
tures than were obtained previously. The remainder of
the data were obtained using the Cray YMP at the San
Diego Supercomputer Center.
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