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Fermi-Liquid-Like State in a Half-Filled Landau Level
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A system of electrons in a half-filled Landau level is investigated in spherical geometry. For systems
of size from lV 1 to 14 electrons with Aux N& 2(N —1) the angular momentum of the ground state is
as predicted by Hund's second rule for composite fermions of one electron and two vortices at zero mag-
netic field. Low-lying excitations also fit this interpretation and trial wave functions give excellent over-

laps. The two-particle correlation function shows a significant correlation hole at short distances and

suggests an asymptotically oscillating form at long distances, as in a Fermi liquid.

PACS numbers: 73.40.Hm, 03.70.+k

The fractional quantum Hall efl'ect [1] results from a

strongly correlated incompressible fluid state [2] formed
at special densities n of a two-dimensional electron layer
subject to a perpendicular magnetic field B Fo.r fully

spin-polarized electrons the most dominant series occurs
at filling factors v= n4p/B—(4p is the Aux quantum hc/e)
of the form v-p/(2p+ I), where p is an integer e0. In

contrast to these odd denominator fillings, the nature of
the ground state at even denominators has long been an

intriguing unsolved problem. In particular, v= —,
'

is the

accumulation point of the sequence above and this state
has been a subject of considerable recent interest.

Although the striking features (quantized a„y =ve /h

and vanishing o„„)seen in conductivity measurements at

quantum Hall states are absent at —,
'

filling, it does show

a broad minimum [3] in p„and exhibits, additionally,
anomalous behavior in surface acoustic wave propagation

[4], indicating an entirely different type of correlation.

Although it has been known for some time from numeri-

cal work [5] that v 2 is compressible, the exact nature

of this state was unknown until now.

Recently a theory of a compressible Fermi-liquid-like

state at fillings v I/q or 1
—1/q, q even, was proposed

by Halperin, Lee, and one of the present authors (HLR)
[6]. The approach was a transformation that represents

each electron as a fermion attached to a 8-function flux

of size qtpp (with q even). The attached Aux can be rep-

resented as a coupling of the fermions to a gauge field

whose action is the (Abelian) Chem-Simons term. In a

mean field approximation where the Chem-Simons gauge
field is replaced by its spatial average (on the assumption

that the fermions form a state of uniform density) the

fermions see a net magnetic field of zero, if the filling fac-
tor for the electrons is 1/q and the sign of the attached
flux is chosen appropriately. The fermions may then

form a Fermi sea, which is a compressible state. If the

filling factor differs from 1/q, the fermions see a net field,

and at filling factors v=p/(qp+ 1) they may fill ~p~ Lan-

dau levels, which is Jain's construction [7] of the in-

compressible quantized Hall states. The role of fluctua-

tions in the gauge field in the compressible state has been

discussed in HLR, and may lead to behavior similar to a
"marginal Fermi liquid" or to a "Luttinger liquid" [8],
but we need not concern ourselves with these fine distinc-
tions from a conventional Fermi liquid here; the essential
properties of the proposed state are in any case that it is

compressible and has a Fermi surface visible in its excita-
tion spectrum.

In this paper we perform finite-size calculations for 1V

spin-polarized electrons confined to the lowest Landau
level on a spherical surface [9], and compare the numeri-

cally obtained states for Coulomb interactions with ana-

lytic forms for trial states based on the HLR picture. To
aid in interpretation we therefore now give a description
of the theory on a sphere.

The electrons experience a spherically symmetric mag-
netic field of a fixed strength B, the total Aux being N&@p,

Nt, & 0 integer. The sphere therefore has radius R
=lJNJ2 where the magnetic length I -Jhc/eB (h
hereafter). The single electron wave functions for the

lowest Landau level are monopole harmonics of angular
momentum S NJ2 [9]. The transformed fermions

(called quasiparticles hereafter) experience in addition

q(N —I ) Aux—quanta due to each other. The total flux

vanishes if

N, =q(N -1),
which is therefore the number of flux required for the

HLR state. In the thermodynamic limit lV ~, we ob-

tain v=N/N&=1/q. q must be even and we consider

q =2 from now on.
Now consider the mean field theory for the quasiparti-

cles. If we approximate the eff'ective statistical gauge
field as uniform (we discuss below when this will be

correct), then the net magnetic field is zero, so the single

quasiparticle wave functions are simply spherical har-

monics, of angular momentum L =0, 1,2, 3, . . . , denoted

s, p, d, f, . . . . Assuming that they obtain an effective ki-

netic energy due to electron-electron interactions propor-

tional to, say, L, and neglect residual interactions be-

tween them, then they will simply fill the lowest angular
momentum shells. For 1V=n, n=1, 2, . . . , they will
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FIG. 1. The angular momentum of the Coulomb interaction

ground state at Nq 2(N —I ) as a function of particle number

N. Solid symbols are calculated; open symbols are the predic-

tions for the next few sizes.
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completely fill n angular momentum shells, the highest
having angular momentum LF n —I, and the total an-

gular momentum wi11 vanish. For other values of N, a
shell will be partially filled and we expect a nonzero an-

gular momentum in the ground state; in these cases resid-
ual interactions between quasiparticles will play a role.
Also in these cases, the density in the system will not be
uniform and strictly we should take this into account in

finding the mean field state, but in the best tradition of
the shell model in atomic and nuclear physics, we will not
do this in our zeroth approximation. We will also discuss
low-lying excited states as quasiparticle-quasihole pairs in

the same picture of quasiparticles in zero magnetic field
with weak residual interactions.

We now turn to a systematic finite-size study of sys-
tems at Ni 2(N —I), N ~ 14 and begin by discussing
ground state quantum numbers. Figure I shows the total
orbital angular momentum of the ground states obtained
by exact diagonalization for the Coulomb interaction
(i.e., inverse chord distance on the sphere) (filled sym-
bols) and expected results for the next two sizes (open
symbols). There are two interesting features here. First,
the uniform, Li,i 0, states occur for N 1,4,9, . . . elec-
trons as expected from the mean field theory picture
above. Second, the angular momentum in other cases is
the maximum value that can be obtained by combining
the angular momenta of the quasiparticles in the partially
filled shell using Fermi statistics. In other words, they
obey the second of Hund's rules familiar from atomic
physics. Large total angular momentum just as in the
case of atoms means the quasiparticles avoid one another
as much as possible and thus optimize their repulsive
residual-interaction energy.

The low-lying spectra for N&n reflect the partially
filled shell level structure. Figure 2 shows the spectra for
7-13 particles. For example, for 8 (or 10) particles there
is a single quasihole (respectively, quasiparticle) in the d
(f) shell; thus we should obtain a single multiplet with
L&~ 2 (3). On the other hand, for I I (7) electrons we
have two quasiparticles (quasiholes) in the f (d) shell

FIG. 2. The low-lying excitation spectra at Ni 2(N —I) for
various sizes N near the N 9 filled shell configuration. Ener-
gies in all figures are in units of e2/4@el. The lowest bands, dis-
cussed in the text, are emphasized.

with L«5, 3, 1, (3,1) which are the only allowed values
for a pair of fermions. Finally, for 12 and 13 (which are
particle-hole conjugates within the f shell, so they have
the same count of low-lying states) the Hilbert space is

L&~ 6,4, 3,2,0. These low-lying states are clearly seen in

the spectra. The ordering of these energy levels also fol-
lows the trend expected from Hund's second rule, with a
slight exception at L&~ 0,2 for N 13 (see Fig. 2).

For the nine electron system shown in Fig. 3, the s,p, d
shells are full. The low-lying excited states form a series
of well separated bands. The lowest band would be ex-
pected to correspond to the lowest effective "kinetic" en-

ergy single particle-hole excitation: a particle in the f
shell and a hole in the d shell. The expected values of

Lanai

would be L &Oi I,2, 3,4, 5; however, L &~ I is missing
from this band in Fig. 3. A similar phenomenon has been
observed [IO] for the incompressible states. We shall
shortly explain this using explicit variational states in the
lowest Landau level. In the noninteracting quasiparticle
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FIG. 3. The low-lying excitation spectrum for N-9 (s,p, d
quasiparticle shells are completely filled); energies hE are rela-
tive to the ground state at L 0. See text for discussion of the
low-lying band at L 2-5.
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TABLE l. The overlaps between the exact ground state and the lowest band of excited states and variational states constructed
from Fermi-liquid states for N 9 and 8 (see text), together with the ground state for % =7. Also the Hilbert space dimensions (in
parentheses) and angular momentum quantum number.

N Ground state Single P-H excitations Two P-H excitations

9 0.998 770(8), L -0 0.983 237(21), 2 0.954457(22), 3 0.948 791(35), 4 0.993719(33), 5 0.977 806(42), 7 0.977845(51), 8

8 0.990228(10), 2 0.964512(14), 5 0.981475(19),6
7 0.990845 (7), 3

model, the next band would contain higher energy single

quasiparticle-quasihole pairs and a set of two quasipar-
ticle-quasihole pair states, namely, two particles in f and
two holes in d. The latter produce the highest L&„, non-

degenerate L«& 7,8 multiplets, as observed in this band
in Fig. 3. However, the identification of states at lower

Li i is less unambiguous, and configuration mixing may
be important here.

To go a step further, we compare with trial wave func-

tions constructed as follows. Consider states of the form

PLLLdetM p(u;; —;u,) (2)
i &j

where u;, v; cos [8;/2]exp [i/;/2], sin [8;/2] exp [ t'P;/—2]
are the spinor coordinates on the sphere [9] correspond-

ing to spherical polars 8;,p; for the ith particle, the ma-

trix M has elements M;i Yf, '(8J, &i),, and PLLL projects
all electrons to the lowest Landau level (LLL). Note
that the Jastrow factor Pt(J(u;v; —v;uj) is totally sym-

metric and alone would describe the Laughlin state for
bosons at v —,', which in the plane geometry [2] would

become g; J (z; —zj ) . The determinant renders the

states totally antisymmetric, and the projection ensures

they are entirely in the LLL. The projection makes the
factors in the determinant act as operators within the

LLL. If we choose the L;, M; to fill the lowest levels, and

if the projection were omitted and the Jastrow factor re-

placed by ff; J(z; —zj) /Iz; —zJ.I, then the state would

be just the singular gauge transformation of a Slater
determinant representing a Fermi sea on a sphere, which

is the basic mean field ansatz for the ground state. The
extra amplitude factors and projection that we have in-

cluded are an attempt to improve the trial state, in partic-
ular by giving it better short distance correlations and by

removing the higher Landau levels to lower the electron
kinetic energy. These improvements, which in the HLR
approach would be due to fiuctuations, make it similar to
Laughlin's state [2] and to Jain's states [7]. Conceptual-

ly, it is a Fermi sea of quasiparticles that consist of one

electron and two vortices, and the construction ~as origi-

nally motivated by the parallel with that in which the

Laughlin state is regarded as precisely a Bose condensate

(i.e., all particles in L 0 state) of bosonic quasiparticles
each containing one electron and q vortices at filling 1/q,

q odd [11]. In general, we regard the set of pairs (L;,M; )
as the set of quasiparticle angular momenta, in spite of
the nonorthogonality of states with distinct sets [(L;,M;),

1.0

T|T TTt ITT T I I

0 2
I I I I

4 6
I I I I I

8 r/r,

FIG. 4. The pair correlation function g(r) (labeled "Fermi" )
as a function of great-circle distance r/I, for both the exact
N-9 ground state and the model state of Eq. (2) with s,p, d
shells Alled; these curves are indistinguishable. For comparison,
we have also plotted g(r) for the Iiiied Landau level at the same
number of flux (labeled "v I"), for the Laughlin wave func-

tion for bosons at v —,
' (labeled "Bose"), and the difference of

the Fermi and Bose cases.

i = I, . . . , Nj but the same L«i, M«& which is due to the
amplitude of the Jastrow factor and to the LLL projec-
tion.

We have already described above the interpretation of
the love-lying states at various sizes in terms of quasipar-
ticles occupying different angular momentum orbitals.
This specifies a trial state of the form (2) for each. The
overlaps of the trial wave functions for the ground states
at N 9,8,7 and for the lowest excited states at several
l «& at N -9,8 with the true Coulomb potential are listed
in Table I, together with the dimensions of the Hilbert
space at that N, L„,. As can be seen this construction is

essentially exact for these states.
We believe that the following facts explain the absence

of the L«i 1 low-lying state (a similar argument ex-

plains the observations in [10], and also goes through for
Bose quasiparticles fl 1]). First observe that the angular
momentum components of the projected density operators

p(8, &) PLLLp(8, &)PLLL, where p is the electron density

operator, form one multiplet of one-electron operators for
each angular momentum 0-2S; in particular, the L 0
part is the total number operator and the L 1 part is the
total angular momentum. The latter annihilates the L„i
=0 filled shell ground states. On the other hand, these

operators act on the trial states (2) by changing the an-

gular momentum of one quasiparticle, just as the usual
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density would on ordinary Slater determinants, as can be
seen using a Clebsch-Gordan series for the products of
spherical harmonics involved, viewed as LLL operators.
In particular the Ltd 1 trial state multiplet formed from
one quasihole in the topmost filled shel), one quasiparticle
in the lowest empty shell would be obtained uniquely
from the filled shell trial ground state by acting with the
L =1 components of the projected density, i.e., the angu-
lar momentum, so the trial Lt,t I state vanishes identi-
cally. The absence of the L«t 1 state in the numerical
spectra is itself evidence that the physics of our approach
is correct —the absence of the trial state makes the evolu-
tion of an exact eigenstate from it impossible.

Figure 4 shows the pair correlation functions g(r) in
the N 9 Coulomb ground state and for the above model
state which are indistinguishable in the figure over the
whole range of distance (measured along a great circle).
A correlation "hole" is visible at short separation; the
part of this due to Fermi statistics alone can be seen by
comparison with the v I result, also plotted; the dif-
ference shows the hole due to interaction-induced correla-
tions. The result for the Laughlin state for bosons at
v 2 is also plotted for comparison. This suggests that
the Fermi-liquid trial state is a good variational state be-
cause the electrons avoid one another fairly well, and we
expect that the state is robust enough to produce observ-
able eff'ects up to temperatures of at least a few degrees,
as seen in experiments [3,4]. The diff'erence gF —

gg os-
cillates with r and suggests a form r sin2kFr (witha) 0 some constant) asymptotically for the HLR state,
similar to the free Fermi gas, which has a 3. Note that
kF I/I in the v g HLR state [6].

In summary, the systematic size dependence of the
ground state and excited state properties of the system,
together with the agreement of trial wave functions with

the numerically obtained states, provide convincing evi-

dence for the correctness of the HLR theory of a
compressible Fermi-liquid-like state of electrons in a
half-filled Landau level.

Similar results found for v= 4 will be presented else-
where, along with details of this work.
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