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Periodic Schrodinger Operators with Large Gaps and Wannier-Stark Ladders
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We describe periodic, one dimensional Schrodinger operators, with the property that the widths
of the forbidden gaps increase at large energies and the gap to band ratio is not small. Such
systems can be realized by periodic arrays of geometric scatterers, e.g. , a necklace of rings. Small,
multichannel scatterers lead (for low energies) to the same band spectrum as that of a periodic array
of (singular) point interactions known as b'. We consider the Wannier-Stark ladder of b' and show
that the corresponding Schrodinger operator has no absolutely continuous spectrum.

PACS numbers: 73.20.Dx, 71.50.+t

In this Letter we discuss spectral properties of some
one dimensional, one electron Schrodinger equations.
Our purpose is threefold: first, we want to point out
interesting features in the band-gap structure of peri-
odic arrays of geometric scatterers, such as the necklace
shown in Fig. 1; second, we show that a singular point
interaction, known as b', which leads to interesting spec-
tral properties and has been extensively studied [1], is a
useful paradigm for the finite energy behavior of appro-
priate geometric scatterers; and finally, we describe the
spectral properties of Wannier-Stark ladders for a peri-
odic array of b' scatterers, which are quite unlike those
of the Wannier-Stark ladders of smooth potentials (see,
e.g. , [2—4] and references therein).

By a classical result, the spectrum of the one elec-
tron Schrodinger equation with periodic potential is in
the form of bands and gaps. Recall that for smooth pe-
riodic potentials the size of the nth gap is rapidly de-
creasing and the band widths increase linearly with the
band index n (for more precise information see, e.g. , [5]).
A common wisdom says that the Kronig-Penney model
(made of a periodic array of Dirac delta functions) gives
the slowest decay of gap widths. In this case the gap
widths approach a constant at high energies and the gap
to band ratio goes to zero like 1/n, with n the band
index. So, in general, periodic potentials are expected to
have gap to band ratios that decrease at high energies at
least as fast as 1/n.

Periodic Schrodinger operators with singular interac-
tions may have increasing gaps and even increasing gap
to band ratios. This is the case for a point interaction
known as 6', which, like the usual Dirac b, is concen-
trated on a lattice of points. More precisely, a 6' point
scatterer of strength A (measured in units of length), is
characterized by the transfer matrix

right and left, and a jump proportional to the first deriva-
tive. This boundary condition satisfies Kirchoff's law and
leads to a self-adjoint Schrodinger operator for any real
A [1,6].

The boundary conditions embodied in 6' appear at
first to be unnatural for quantum mechanics, and some
efforts have been made in order to assign b' a quantum
mechanical interpretation [6]. It turns out that unlike
Dirac's b, the b' cannot be approximated by potentials,
i.e. , functions of the coordinate with small support. In
particular, it has little to do with the derivative of Dirac's
6 function. Rather, the (known) approximants involve
functions of both coordinate and momenta [6]. The ab-
sence of a good realization of b' may be the reason why it
has not attracted more attention. One of our aims is to
rectify this situation, and to show that the unique spec-
tral properties of b' are, in fact, a paradigm for geometric
scatterers.

Consider the band-gap structure of periodic
Schrodinger operators that come from allowing compli-
cated geometries in one dimension, e.g. , like those of a
periodic necklace of rings and its onionlike generaliza-
tions. Figure 1 illustrates one such system, where onion-
like scatterers made of four wires, or channels, are con-
nected by wires. The gap to band ratio of such objects
does not decrease at high energies, and, in particular,
both bands and gaps tend to increase. As we shall show,
in certain (limiting) cases, such as the periodic array of
small geometric scatterers with many short channels, the
band-gap structure (for low energies) approximates that
of a periodic array of b'.

The out of the ordinary band-gap structure of 6' comes
together with an out of the ordinary Stark efFect: recall
that for a large class of Stark Hamiltonians in one di-
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which relates (@&,) on the two sides of the scatterer, i.e. ,

the wave function has continuous first derivatives on the

FIG. 1. A necklace made of geometric scatterers in the form

of "onions, " each made of four wires joined at two vertices.
The onions are strung together by connecting wires.
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mension, including Wannier-Stark Hamiltonians, under
rather weak diKerentiability conditions on the potential,
the spectrum coincides with the real axis and is (purely)
absolutely continuous [4]. The Wannier-Stark ladder is
not a ladder of eigenvalues (we refer the reader to [2], and
references therein, for results on the question of existence
of the Wannier-Stark ladder as a ladder of resonances,
and to [7] for the experimental status). In contrast,
tight-binding models, which have only a finite number
of bands, have Wannier-Stark ladders of (discrete) eigen-
values. Tight-binding models may be thought of as a
limiting situation of the Schrodinger operator with an in-

finitely large gap at high energies. The question whether
the Wannier-Stark ladder is a ladder of eigenvalues or not
seems, therefore, to be related to the structure of gaps
at high energies. This point of view has been stressed
by Ao who also argued that the Kronig-Penney model is
a borderline situation, which for weak electric fields has
the Wannier-Stark ladder of eigenvalues, but for strong
electric fields does not [8]. Although we have nothing to
say about this intriguing transition, our results provide
some support to the overall point of view (see also [9] for

related phenomena in the random setting).
Let Ab' denote a b' point scatterer of strength A,

located at x, and

5 d
H(a, A, F) = — + ) Ab„', —eFz

2m dx
n&Z

denote the Wannier-Stark ladder operator for 6', with a
the period, and F the electric field. We choose eF & 0.
The symbol H(a, oo, F) stands for Neumann boundary
conditions at each point of the lattice.

It is a general fact about the Wannier-Stark ladder
Hamiltonians (which follows from the unitary transla-
tion by lattice spacing) that the spectral properties are
periodic with period eFa. For example,

Spec(H(a, A, F)) = Spec(H(a, A, F)) + eFa. (2)

We now state our results on Wannier-Stark ladders for
pl .

Theorem. For F, A g 0—, the absolutely continuous
spectrum of H(a, A, F) is empty

Remarks: (1) The proof of the Theorem is rather tech-
nical and, therefore, shall be given elsewhere [10]. Below
we shall sketch the ideas and the basic intuition behind
the proof. (2) The assertion of the theorem generalizes to
nonidentical scatterers, i.e., to situations where A is re-
placed by a sequence (A„) which may be position depen-
dent, provided [A„] & A & 0. (3) The essential spectrum
[11] of H(a, oo, F) is given explicitly by the accumula-
tion points of the set

set (eFa) (E/q —1/2] f c Z) and has gaps (in fact, it
is a nowhere dense, countable set). For p irrational it
is the real axis. Our results say nothing about what is
the essential spectrum (as a set) for finite A nor if the
spectrum is pure point or singular continuous. (4) The
Wannier-Stark problem in one dimension and the Zee-
man problem with periodic potentials in two dimensions
have a dimensionless parameter which characterizes com-
mensuration of periods. In the Zeeman problem it is the
number of quantum flux units per unit cell [3]. In the
Wannier-Stark problem it is p. Aspects of this fact, in
the tight-binding setting, have been stressed in [12]. In
the Zeeman problem it is known that the spectrum, as
a set, is sensitive to number theoretic properties of the
flux per unit cell. There is, of course, no corresponding
sensitivity of the spectrum for Wannier-Stark Hamiltoni-
ans with smooth periodic potentials. The sensitivity of
the spectrum for the 6' Wannier-Stark Hamiltonians as
a function of p, is open.

A basic intuition to the results discussed above comes
from considering first the scattering properties of a single
scatterer. Let us start by contrasting b' of strength A,
with the Dirac b interaction of strength 1/A. The Dirac
delta interaction has transfer matrix

(1 01

For a single delta scatterer, the reflection amplitude for
wave number k is [13) r = —1j(1—2ikA) which goes to
—1 as kA ~ 0. (Here k =— /2mE/hz & 0 is the wave
number associated with an energy E.) Total reflection
can be interpreted as a decoupling of the two sides of the
scatterer which occurs here through a Dirichlet boundary
condition. Decoupling is, therefore, a low energy phe-
nomenon for Dirac's b. On the other hand, for a single
b the reflection amplitude is r = ikA/(ikA —2) which
approaches +1 in the limit kA -+ oo. Now the total re-
flection can be interpreted as decoupling the two sides of
the scatterer through an approach to a Neumann bound-
ary condition. The remarkable fact about b' is that the
decoupling is a high energy phenomenon. The effective
decoupling at large wave numbers is at the heart of many
of the unique properties we shall discuss below.

Consider now the onionlike scatterers with N channels,
i.e., replace the N = 4 channels of Fig. 1 by a general N
For simplicity sake, suppose that all the wires are ideal
identical conductors of length L, and that the boundary
conditions at the two vertices are that the wave function
has a unique limit at the vertices, and that Q Q']„„«„——
0 (all legs are considered outgoing from the vertex). The
transfer matrix across the scatterer is

(eFa(pn —k —1/2) n, k C Z), ~( cos(kL) sin(kL)/Nk l
Nk sin(kL) cos—(kL) ) (4)

where p = hz/8meFas. Thus, for p = p/q rational,
the (Neumann) essential spectrum is contained in the

(in the special case N = 1 it corresponds to an ideal
wire of length L). The reflection amplitude from one
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such scatterer is

r kL;N
¹ + 2iN cot(kL) + 1

(5)

The reflection is periodic in k, something one expects for
a geometric structure; there is no limit at high energies.

Note first that in the k ~ 0 limit, Tjy,g(k)
Tq (L/N), expressing the fact that in the long-
wavelength limit a geometric scatterer looks pointlike.
This, however, does not yet say that geometric scatter-
ers are like b', because, from our perspective, the crucial
point of 6' is the high energy decoupling. In fact, as
Eq. (5) shows, the reflection has no limit as k -+ oo.
However, the reflection from certain geometric scatter-
ers can mimic the reflection from a 6' in the following
sense: consider the limit of a small scatterer with many
channels: L ~ 0, NL = P,

r(kL; N) ~ —(1+2i/Pk)

When k ~ oo (but still kL && 1) the reflection am-
plitude goes to —1, which gives the requisite decoupling
at high energies (albeit through Dirichlet). One should
therefore expect that such geometric scatterers will share
with b' some of its remarkable features. We shall now
discuss evidence for this.

By stringing geometric scatterers or point scatterers
with wires, or with a second type of geometric scatter-
ers, to a periodic necklace as, e.g. , in Fig. 1, we get a
one dimensional system with spectrum made of bands
and gaps. Let T~, ~g~(k) be the transfer matrix for
one period, for wave number k. The discriminant is
6(k)—:Tr (T~„;,d) . By Floquet theory, the bands are
given by the condition —2 & b, (k) & 2. It is a straight-
forward exercise to show that for the Kronig-Penney b'

model [1]

EKpb (k) = 2 cos(ka) —Ak sin(ka) . (7)

For a necklace made of a pair of interlacing geometric
scatterers

g„,(k) = (1+ + cos[k(L& + La)]
Ng Ng

+ 1 — — cos Li —Lq 8

(for the necklace of Fig. 1, Nq = 1 and Ns ——4). It is
known [1],and can easily be shown to follow from Eq. (7),
that the band-gap structure of the Kronig-Penney 6'

model has gaps that increase linearly with the band in-

t

dex n while the bands at large energies approach a con-

FIG. 2. The discriminant for the necklace of Fig. 1 as a
function of k. The length ratio of the connecting wires to
the wires making the "onion" is 5. The two straight lines are
at k2 and the bands are drawn thick. One period (in k) is
shown and the pattern then repeats periodically.

stant width which is 452/ma%. This narrowness of the
bands (compared with the large gaps) can be understood
as a consequence of the fact that at high energies, the
unit cells get decoupled since b' approximates Neumann
boundary conditions.

The dependence of the discriminant of the necklace,
Eq. (8), on k is, of course, trigonometric. This implies
that the band-gap structure is periodic (or almost peri-
odic) in k. In particular, both bands and gaps tend to
increase, linearly with k, at large energies, as a conse-
quence of the fact that E = Asks/2m. Furthermore, the
gap to band ratio is almost periodic as well. This be-
havior is qualitatively different from what one gets from
periodic potentials where the dependence of the discrim-
inant on k is not trigonometric and where, on general
grounds, one has b~„;~g(k) —2cos(ka) ~ 0 as k ~ oo.
The special case Lq ——I2 gives rise to an amusing sit-
uation where half of the gaps (all the periodic ones) are
closed.

Figure 2 shows the discriminant and the bands for the
necklace of Fig. 1 as a function of k . The length ratio of
the wire to scatterer is 5. (The discriminant is computed
for the case where all four channels of the scatterer have
identical lengths. ) As one can see, even when the number
of channels is relatively small (N2 ——4), and when the
scatterers are not really tiny (I &/L2 = 5), a feature of
6' emerges in that the second gap is larger than the first,
and the third gap is larger than the second. The pattern
reverses and then repeats periodically. The figure shows

one period. Taking Ns larger and L2 smaller leads to
gap increase for many more gaps.

One can actually make the gaps grow with energy on
arbitrarily large scales by taking increasingly complicated
scatterers. For example, by considering the limit of Eq.
(6), i.e. , L2 —+ 0 and LsN2 = P, the discriminant of the
necMace with Ng ——1, Lg ——0, obeys

,(k) = 2cos[k(a+ Le)]+
~

Nq+ —2
~
sin(kI2) sin(ka) ~ 2cos(ka) —pksin(ka) .(

Ng

The lower part of the spectrum coincides, therefore, with that of the Kronig-Penney h' model with A = p. This sup-
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ports the point of view that the lI' model can be a useful
paradigm for certain geometric scatterers.

Let us now make a few comments regarding the proof
of the theorem, which is an adaptation of a technique
previously used by Simon and Spencer [14]. Replacing
the b' point scatterer at a lattice point no by a Neu-
mann boundary condition, i.e., setting A„, = oo, is a
rank one perturbation (of the resolvent) which decouples
the right of np from the left. It is a general fact that
the absolutely continuous spectrum is stable under finite
rank perturbations. The half lattice on the left is essen-
tially like a triangular well problem and so has discrete
spectrum. This means that the absolutely continuous
spectrum is determined from the half line to the right of
np . We now repeat sending A„,. to infinity for a sequence
of points n, , j= jp, jp+1, . . . , that march ofF to infinity.
Although for large j the individual M„'. are close to a
Neumann boundary condition, one can actually not take
any sequence of points. A judicious choice is to take a
partial sequence of the points n~ const+p(j+I/2)2, so
that for large j, the Neumann decoupling takes place at
points that lie deep in the forbidden gaps of the periodic
problem, where the discriminant b, (ks) G(j) is large.
[The efFective wave number and position are related by
conservation of energy: ns p(ks a/s )

2 ]. Indeed, one
can show, via the asymptotics of Airy functions, that
[H(a, A, F) + iEp] i —[H(a, jA„),F) + iEp] i, where
Ep is a finite (real) constant, A„= oo for an appropriate
subsequence, and A„= A otherwise, is a trace class oper-
ator. By the Kurods Birman theorem [15] this gives the
stability of the absolutely continuous spectrum. Since
H(a, (A„),F) clearly has only pure point spectrum, the
theorem follows.
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