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Kondo EH'ect in a Tomonaga-Luttinger Liquid
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The Kondo eA'ect in a repulsively interacting electron system (Tomonaga-Luttinger liquid) is studied.
By using the poor man's scaling method it is shown that the Kondo coupling in this model Aows to the
strong-coupling regime not only for the antiferromagnetic but also for the ferromagnetic case. The
ground state is governed by stable strong-coupling fixed points where the impurity spin is completely
screened; the fixed-point Hamiltonian consists of two semi-infinite Tomonaga-Luttinger liquids and a
spin singlet. Specific heat, susceptibility, and conductance are calculated for low temperatures.
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The Kondo effect has been one of the central problems
in condensed-matter physics since its discovery [1]. The
eA'ect arises from the exchange interaction between an

impurity spin and an electron gas in three dimensions
(3D). This is an example of an asymptotic free theory in

the sense that the interaction changes from weak to
strong coupling as the temperature, T, or energy scale is

decreased. At T 0 the impurity spin is completely
screened by the conduction electron. Temperature depen-
dence of specific heat, C, and spin susceptibility, g, can be
understood from the local Fermi liquid theory [2]. It was

also pointed out [3] that the above picture for the single-
channel Kondo effect should be changed when the num-

ber of electron channels, W, exceeds 2S (S: the impurity

spin); the system is governed by a non-Fermi-liquid fixed

point, showing anomalous temperature dependence of C
and g [4,5].

In orthodox treatments of the Kondo effect, the
electron-electron interaction is always neglected because
in 3D the interacting electron system can be described as
a gas of almost noninteracting quasiparticles, i.e., the
Fermi liquid. The situation is different in one dimension

(1D), where repulsive interaction forces the Fermi liquid

to change into a Tomonaga-Luttinger (TL) liquid [6,7],
whose low-energy excitations are not quasiparticles but

collective charge and spin density fluctuations. Moreover,
in lD there are two species of electrons, i.e., left- and

right-going electrons, which interact with a magnetic im-

purity (S —,
' ). Thus we are led to ask whether the Kon-

do eff'ect in the TL liquid is different from that in the

Fermi liquid and what sort of fixed point governs the
eN'ect. These questions are addressed in this paper.

Apart from academic interest, the Kondo effect in the

TL liquids or, more generally, the problem of the
response of the TL liquids to some local potential is

becoming a real question that ~ould be accessible experi-
mentally with very narro~ single-channel quantum wires.

For this reason, there have recently been intensive

theoretical studies on electron tunneling through a single

potential barrier [8], resonant tunneling through double

barriers [9], and the Fermi-edge singularities in optical
spectra [10,11]. The Kondo eff'ect in the TL liquids was

also discussed by Lee and Toner [12]. They derived scal-

ing equations for the Kondo couplings in the weak-

coupling regime using the Abelian bosonization method

[13],but their equations do not preserve the SU(2) sym-

metry. In addition, the physical properties at low temper-

atures, i.e., strong-coupling regime, have been left as an

open question. In this paper we first derive the scaling

equations for the Kondo couplings in their weak-coupling

regime by using the poor man's scaling method, which

preserves the SU(2) symmetry. By analyzing the flow di-

agram we argue that at low temperature the system is

governed by stable strong-coupling fixed points where the

impurity spin is screened completely. In the ground state
the system reduces to two semi-infinite impurity-free TL
liquids and a spin singlet, in a similar way as in the Kon-

do eff'ect in the Fermi liquids. The important difference
is that the Kondo coupling flows to the strong-coupling

regime for both antiferromagnetic and ferromagnetic

couplings because the local backward-scattering potential

is a relevant perturbation in the TL liquids [8].
We begin with the extended Hubbard model coupled

with an impurity spin (5 —, ):

H = —tg(cj ~J —l +H.c.)+Ugnj lnJ 1+Vg., nj,n, l tt+JS. s—o, (1)
i i ~P

where ci is the annihilation operator of the electron of spin o on the site j, nJ =cia-, 8 is the impurity spin, and so

is the electron spin at j 0. Taking the continuum limit [13],we can reduce the Hamiltonian (1) to

vFZ k(a l, k, &l,k, n a2, k, W2, k, cr)+ Z 2 Xa 1,k~, a~a'Jkq. cr2a2k2+p, a2al k~
—

p,.a~.t

Jgg+ Z [~+(at,k, , lal, k, i+at k, , ia2 k, t)+ H.c ]+ Z [~+(al,k, , la2 k.i+at k, , lal, k, l)+H.c.]
2L k, ,k,

'' '' '' '' 2I k, k,

+ 2 2 s~z(al, k, ,W 1k+at k, ,&, 2,,k, )+ 2 2 s~ (al, k, , W2, k, a) k, ,& l,k,
JzF
2~ k t,k2 (a,s) 2L k l.k2 (e,s)
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where a~ I, ~ (a2q ) is the annihilation operator of right-

going (left-going) electron, L is the system size, g2 is the
matrix element of the forward-scattering interaction, and
(cr,s) (1,+ I ),(), —1). Assuming that the system is

away from half filling and is on the TL fixed line, we

neglect both umklapp and backward scattering. The
electron-electron interaction is weak and repulsive

(g2 & 0) so that the parameter K~ = [(I g—2/zrvF)/(I
+g2/re F )] ' determining the zero-temperature cor-
relation exponents of the TL liquid impurity-free is small-
er than unity. The corresponding parameter for the spin
sector, K, is fixed to be unity because the conduction
electron has SU(2) spin symmetry. The bare Kondo cou-
plings satisfy the relation J&F J,F =J& J&z =Jo, im-

plying that the impurity spin also has the SU(2) symme-
try. An important feature of our model is that there exist
two kinds of Kondo coupling, forward scattering (J&F
and J,F) and backward scattering (J&B and J,B), in con-
trast to the ordinary Kondo problem in 3D, in which case
after some transformations we have only left-going elec-
trons scattered by forward Kondo couplings [5]. With
the bosonization method [13] the Hamiltonian (2) can be
expressed by charge and spin bosons; the forward Kondo
scattering term can be expressed with the spin boson only
[5,14], while the backward Kondo scattering term in-
volves both charge and spin bosons. The existence of the
latter coupling is essential to our discussion.

We first study the weak-coupling regime in which

g2I/XUF « 1, JlF(Bj/KUF « 1., and J,F(B&/nvF « 1 . We ap-
ply the poor man's scaling method [15]. Up to the order
g2J and J, the recursion relations are obtained as

dJ~F
dl

I
(JJFJzF +JLBJ. zB ),

2xvF

dJ~B
dl

(3)
1

(g 2JJB+JJFJ.zB +JJBJzF). .2xt'F

dJ, B
(r2JzB+2JiFJiB),

2ZUF

where dl = —d InE, with E, being the bandwidth cutoff.
Note that the above equations preserve the SU(2) sym-
metry, and thus we may set J&F-JzF=JF and J~B

J,B JB. Since the scaling dimension of JB is —,
' (1

+K~) = 1 g2/2zrvF, t—he equations are reduced to

dJF
(JF+JB),

2XVF

(4)
de =—(1 —Kp) JB+ JFJB .

EVF

The flow diagram is depicted in Fig. 1. The trivial fixed
point, JF =Jg =0, is unstable because Jg is a relevant
perturbation when the interaction is repulsive. Conse-
quently the renormalization flows go toward the strong-

JF

FIG. 1. The flow diagram for the Kondo couplings. The dot-
ted lines represent Jg +' Jp.

coupling regime not only for antiferromagnetic but also
for ferromagnetic Kondo couplings. Here some remarks
on the Kondo temperature Tg are in order. When

~JO~ &&g2&&2zvF, the scaling is governed mainly by the

g2JB term in Eq. (3) and accordingly TB is estimated as
Ti(=E,O(~JO~/g2)

' for both the antiferromagnetic
(Jo&0) and ferromagnetic (Jo&0) cases [12]. Here
E,D is the original cutoff. The power-law temperature
dependence of the physical quantities, e.g. , resistivity,
is expected for T& Tg in this case. When g2«)JO~
«2xvF, on the other hand, the temperature dependence
is strongly dependent on the sign of Jo. In the antiferro-
magnetic case, TI(=E,oe

' ' and the logarithmic
temperature dependence is observed for T & TB as in the
usual antiferromagnetic Kondo effect. In the ferromag-
netic case we expect a nonmonotonous temperature
dependence. As the temperature is lowered down to—2' /gT( = F.,oe

' ' the Kondo couplings scale to zero as in

the usual ferromagnetic Kondo effect. As we further
lower the temperature, the Kondo couplings turn to in-

crease and enter into the strong-coupling regime around—c(2m'/g2)
TB = T(e ' ' with c being a constant of order l.

If we tentatively extend the scaling equations (4) to the
strong-coupling regime, where the above perturbative
analysis in fact loses its validity, we can find three
strong-coupling fixed points: (a) JF =~, JB ~, (b)
JF=~, JB=—~, and (c) JF ~, JB 0. The last one
can be identified with the fixed point of the two-channel
Kondo problem in 3D because for Jq =0 the spin part of
the bosonized Hamiltonian is the same as that of the
two-channel Kondo problem [5,14]. In the original lat-
tice model (1), the vanishing of JB means that the impur-
ity spin is coupled equally with the electron spin of two
neighboring sites, say j=0 and j=1, and thus the impur-
ity spin is overscreened. This fixed point is unstable
against the asymmetry in the Kondo couplings to each
site. In Eq. (1) the impurity spin interacts with a single
electron spin at j=0 so that the bare Kondo couplings
satisfy JF =J&~0. Even starting from the weak-coupling
regime, our system will eventually reach the fixed point
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(a) [(b)] for the antiferromagnetic (ferromagnetic) case.
This is our basic assumption for the analysis belo~.

To make the physical picture more explicit, we consid-
er the model where the impurity spin is coupled with the
conduction electron on site j 0 with the Kondo coupling
J~ and those on sites j +1 and —

1 with the coupling
J2. In the continuum approximation, JF (x J~+2J2 and
Jjr a- Ji —2J2. The fixed point (a) corresponds to J j

—~
with J2 finite, and thus the impurity spin forms a local
singlet with the conduction electron at j=o [Fig. 2(a)].
The fixed point (b), on the other hand, corresponds to
J2 ~ with J ~ finite. The impurity spin forms a doublet
with the two conduction electrons. This doublet interacts
with the conduction electron on site j=o with the ex-
change coupling —Jt. In Fig. 1 it is seen that JF
+Jg(x J~ &0 on the trajectories for the ferromagnetic
case (initially JF Ja (0). Then —J i ( )0) is the anti-
ferromagnetic coupling and hence the ground state is a
singlet. This is schematically shown in Fig. 2(b), where
the impurity spin and the three conduction electron spins
on sites j 0, +'1 form the singlet. In either case the
fixed-point Hamiltonian consists of two semi-infinite TL

(b) s=o

F1G. 2. The schematic picture of the strong-coupling fixed
points for (a) antiferromagnetic and (b) ferromagnetic Kondo
couplings.

liquids and the spin singlet. The above picture is similar
to that proposed in Ref. [16], where the Heisenberg spin
chain coupled with one or two impurity spins is analyzed.

To verify our picture of the strong-coupling fixed
points, we must check that all the possible perturbations
around the fixed-point Hamiltonian are irrelevant. For
this purpose we have performed the 1/J expansion [2], as-
suming that the impurity spin is frozen to be a singlet.

~

The expansion yields the following perturbations:

)j jZ(Cm crCmcr+C —meC —mar)+~2K (Cm eC —mes+ C —m~Cm~) +X3+ (Cm~cm+ j ~+ C -m ~C —m j + HC. )

14[em jcm 1 Cm jem, j +Cm j Cm jCm jCm, j + (rrr rii )]+ ' ' '

where m 1 (2) for the antiferromagnetic (ferromagnetic) Kondo coupling, and the Ai's are positive constants depend-
ing on the Kondo coupling. The first two terms are generated because the system does not have the electron-hole sym-
metry. The second term comes from the process in which an electron tunnels from one TL liquid to the other with virtu-
ally breaking the spin singlet. We then take the continuum limit and apply the Abelian bosonization method to the two
semi-infinite TL liquids [16]. The field operators of right- and left-going electrons are written as

% ~, (x) exp ~ikFx ~ —[8+(x)+8—(x)+sf+(x) ~ sp —(x) —nsgn(x)]
1

(2 a)' '
where (e,s) (t, + I ),(), —1), and a is a short-distance cutoff of the order of the lattice constant. The bosonic fields

8~ (x) and p~ (x) describing collective charge and spin density fiuctuations are given by

~/2

44-(x) g e ' sinkx[e(x)(ej k+ ej k)+e(-x)(eji, +eii )], (6a)
t&p kL

e-(x) -i g
p&p kLK

e '" coskx[e(x)(ej k f,/()+e(-x)(.fk f k)], (6b)

where (4~,K,ei k) (8+,K~,p i, )J, (p~, l, yj k). The fixed-point Hamiltonian for the two semi-infinite TL liquids is

Hp gp&p Zj.-j ik(v, pj, ppj k+v, yj pyj, k), where v, vF[1 —(g2/nvF) ] ' and v, vF Equatio. n (5) is then rewritten

as

H' ciao i[8 8+(+0)+8„8+(—0)]+C212cos( —,
' [8—(+0)—8—( —0)])cos(—,

'
[hajj

—(+0) —
4j —( —0)])

cic 1j 3([r1„8+(+0)] + [rl 8+ ( —0)] ) —a (cp3+c414)([a„y+(+O)1'+ [a„4j+( —O)] ') +

where the c; s are positive constants of order 1. The scaling dimensions of various operators near the edges of the two

semi-infinite systems are different from those of the bulk operators (which is called the surface critical phenomena [16]):
The dimension of the second term, cos( —,

' [8-(+0) —8- ( —0)])cos( i [jjj-(+0) —
jj —( —0)]), is i [()/K~) + 1]. Since

the four terms in Eq. (7) are the leading irrelevant operators, all the possible perturbations except the first term (dimen-

sion 1) are irrelevant. Moreover, since the first one is nothing but a local scattering potential, its effect is mainly to shift

the ground state energy; it is harmless. Thus we conclude that the strong-coupling fixed points are stable.
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18'C =dl
Kp

The low-temperature properties of the system are governed by the leading irrelevant operators around the fixed points

[2,5]. We calculate the change in specific heat, bC, produced by the impurity spin and that in spin susceptibility, b2. In

lowest order in H' they are obtained as

T V V V V

2 A2Gts:e g T

l/KpaT aT
&'s

(9)

where g is a positive dimensionless constant. Thus G and
8'C show the same anomalous temperature dependence in

contrast to the Kondo effect in 3D.
In summary, we have shown that the Kondo couplings

grow under renormalization both for antiferromagnetic
and ferromagnetic couplings. We have argued that at
low temperature the system is governed by stable strong-
coupling fixed points where the impurity spin is complete-
ly screened. We have shown that at low temperature the
changes in the specific heat, the spin susceptibility, and
the conductance behave like bC cc T ', bg cs: T, and

(l/K ) —l

g CL-
T(l/Kp)-l
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2

8g=d3a (c+3+c+4) + . +0((aT/vF) '),2 pg 1/Kp

2
S

where hatt is the Bohr magneton and the dt's are positive
constants. Perturbations that are less relevant than the
four terms in Eq. (7) also give T-linear specific heat and
T-independent susceptibility. From Eqs. (8a) and (8b)

(l/K, ) —l
we see that at low temperatures 8'C~T ' and
bgtx: T [17]. Note that the first term in Eq. (8a) van-
ishes when the electron system is a Fermi liquid (K~= I).

Another important quantity is conductance, G, whereas
a key quantity for the Kondo effect in 3D is the resistivi-
ty. Since the fixed-point Hamiltonian decouples into two
isolated TL liquids, the conductance vanishes at T 0.
At low temperatures the conductance can have nonzero
contribution from the tunneling represented by the
second term in Eqs. (5) or (7). In lowest order the con-
ductance is calculated as [8]
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