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We demonstrate the level statistics in the vicinity of the Anderson transition in d ) 2 dimensions
to be universal and drastically difFerent from both Wigner-Dyson in the metallic regime and Poisson
in the insulator regime. 'The variance of the number of levels N in a given energy interval with

(N) » 1 is proved to behave as (N)» where p = 1 —(vd) ' and v is the correlation length exponent.
The inequality p & 1, shown to be required by an exact sum rule, results from nontrivial cancellations
(due to the causality and scaling requirements) in calculating the two-level correlation function.
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The problem of level statistics in random quantum sys-
tems is attracting considerable interest even now, four
decades after the pioneer works of Wigner and Dyson [1].
This is because of the universality of the Wigner-Dyson
statistics which makes it relevant for a large variety of
quantum systems [2].

For the problem of a quantum particle in a random
potential, the Wigner-Dyson statistics is known to be
applicable for finite systems in the region of extended
states [3—5] which will be referred to as a metallic region.
With increasing the random potential, the system under-

goes the Anderson transition into the insulator phase [6],
where all states are localized. In this region, the statistics
of energy levels is expected to be Poisson.

There is, however, the third region, namely, the critical
region in the vicinity of the Anderson transition where
the spectral statistics is believed to be still universal [7,8],
although different from both Wigner-Dyson and Poisson.
As the critical region cannot be considered perturba-
tively or semiclassically, nearly nothing is known about
the third universal statistics.

The first attack at this problem has been done in Ref.

[7] where the simplest statistical quantity, the variance

((bN)z) of the number of energy levels N in a given

energy interval of the width E, has been considered

(SN = N —(N), and ( ) denotes the ensemble aver-

age over the realizations of the random potential). The
dimensional estimation made in Ref. [7] has resulted in

((bN)z) = a(N), thus being different from the Poisson
statistics only by a certain number a & 1.

We will see, however, that this result contradicts an ex-
act sum rule resulting from the conservation of the total
number of levels. The point is that in the dimensional
estimations [7] analytical properties of diffusion propa-
gators have not been taken into account. We will show

that the analytical properties resulting from causality to-
gether with certain scaling relations near the Anderson

transition make the (N) proportional contribution to the
variance vanish. We will calculate the spectral density

correlation function and deduce from it the following uni-
versal relationship between the variance and the average
number of levels in the energy interval E,

((bN) ) = P(N)~,

that holds exactly at the mobility edge. Here v is the
correlation length exponent, and the factor asap is uni-

versal in a sense that it is determined completely by the
dimensionality d and the symmetry class of the Dyson
ensemble {P = 1, 2, or 4 for unitary, orthogonal, and
symplectic ensembles, respectively). For many systems
v = 1 so that p = 2/3 for d = 3. In general, Eq. (1)
suggests a new way of determining v.

This is the main result of the paper. It demonstrates
that in the vicinity of the Anderson transition there re-

ally exists the third universal statistics. It, governs the
spectral fluctuations that are weaker than for the Poisson
statistics, {{bN)z)p {N), but much stronger than for
the Wigner-Dyson statistics, ((bN) )wD ln(N).

All three statistics are universal and exact in the same
limit:

L —+ oo, E/b, = (N) = const » 1, (2)

where L is the sample size. In this limit, the mean level

spacing 6 = (voL") tends to zero (vo is the mean

density of states), but the number of levels in an interval

E is kept finite, although very large.
The new level statistics describes the Buctuations in an

energy band ~e' —so] ( E/2 centered exactly at the mobil-

ity edge eo ——6,. For the critical regime to be achieved the
correlation length L,(e) which diverges as ]s/s, —l~

must exceed the sample size for a/L e in the energy band
E. Because of this uncertainty L, = (E/s, ) ", and

L,/I = (N) "(L/A)"" (3)

where A = (vos, ) i/". Then the Harris criterion [9]
v & 2/d ensures I,/L + oo in the limit (2) for the
energy band centered at co ——e, . In the same limit,
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Wigner-Dyson and Poisson statistics describe exactly the
fluctuations in bands centered at sp & s, (the metallic
region) and sp & E' (the insulating region), respectively.
The limit (2) is required, therefore, to avoid mixing the
levels belonging to difFerent regions as well as to make
the finite-size corrections vanishing.

We consider the spectral density correlation function

1
R(u)) = —z(v(s)v(s+ (u)) —1,

Po
(4)

R(s) ds = 0, s—:~/b, .

The variance ((bN)z) of the number of levels N in the
energy band of the width E centered at a certain energy
sp (e.g. , at the Fermi level s~) is given by

Then

I,'N)

((bN)z) = ((N) —]s])R(s) ds
-(N)

(6)

d((bN)z)
d(N) (7)

If the function R(s) is universal in a sense that it does
not depend on any parameter, then only the condition
(N) » 1 is sufficient, due to the sum rule (5), to make the
integral in the right hand side of Eq. (7) to be arbitrarily
small. Therefore, in this case ((bN)2)/ (N) ~ 0.

The universality assumption is crucial for vanishing the
contribution to the variance proportional to (N), or the
higher power of (N). However, a finite disordered sample
is characterized by a set of relevant energy scales that
obey in the metallic limit the following inequalities:

b, « 1/rD « 1/r « s» (8)
where rD = L /D is the time of diffusion through the
sample, D is the electronic diffusion coeKicient in the
classical limit, D = vzr/d, r is the elastic scattering
rate, 5 = 1. Naturally, for sufficiently large (N) the
function R(s) depends not only on s. It results in

((bN) ) oc (r&A)spaz (N) in an energy band of the
width E » 1jrD [5]. We will show elsewhere that higher
than (N) contribution arises also in the critical region
(4 1/r~ && 1/r s~) where it is proportional to
(N) (rb)o (0 & a & 1 is a certain critical exponent).
Both these nonuniversal contributions could be of impor-

where v(s) is the exact density of states at the energy
s. Note that the function R(ur) has a singular term b(ur)
resulting from the self-correlation of energy levels.

Before deriving the announced result, Eq. (1), we
demonstrate that the exact sum rule prohibits the vari-
ance ((bN) ) to be (N) proportional. The conser-
vation of the total number of energy levels for any
nonsingular random potential may be written down as

f [v(s+ ~) —vp]~ = 0. It leads to the sum rule:

tance for finite systems. However, they do vanish in the
limit (2). In this limit only the universal contributions
to the variance survive.

In the insulating regime, the above speculations are
not applicable for estimating the integral in Eq. (7).
The reason is the existence of the additional energy
scale bf = 1/vp(~ = b(L/()~ which is a typical spac-
ing for states confined to a localization volume ( cen-
tered at some point. Since such states are repelling in
the same way as extended states in metal confined to
the whole volume L~, the function R(s) at s g 0 is

expected to be similar to the Wigner-Dyson function
RwD(ld/6) with substituting 6 by 6g. Such a func-
tion R(s) = ((/L) RwD[((/L) s], which obviously obeys
the sum rule (5), is not universal at alt scales and reduces
to a constant ((/L)—~ for s && (L/()~. Therefore, in the
limit (2) the regular part of R(s) makes no contribution
to the right hand side of Eq. (7). Then d((bN)z)/d(N) is
exactly equal to 1 due to the singular b(s) term in R(s).

Now we turn to microscopic calculations. In the metal-
lic region, R(~) is given by the two-diffuson diagram [5]
that is convenient to represent (for details see Ref. [10])as
in Fig. 1(a), separating the difFusion propagators (wavy
lines). Both in the metallic region for uCb, and at the
mobility edge one should consider also 2n-diffuson cor-
rections [Fig. 1(b) for n = 2]. In all diagrams, the poly-
gons with 2n + 1 vertices are made from the electron
Green's functions that decrease exponentially over the
distance of the mean free path. Thus, all vertices of any
polygon correspond to the same spatial coordinate and
its ensemble-averaged contribution reduces to a constant
which we denote vpr "yz„+i, where y2„ii are dimen-
sionless complex numbers. Then the general expression
for the 2n-diffuson diagram in the momentum represen-
tation is given by

2A

Rz„((u) = "+' Re ) & b P(~, qi) &. (9)
qi" qq„j=l

(a) (b)

FIG. 1. Diagrams for R(u).

Here P(~, q) is the exact difFusion propagator, b~
b~, +...+~,„p, and the factor P i accounts for the number
of diagrams in difFerent ensembles where some channels
of propagation are suppressed.

In the metallic region, P(u, q) = (Dq —iu) i. For
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(uvre.«1 (that corresponds to t » 7.~), the excess parti-
cle density is distributed homogeneously over the whole
sample so that only q = 0 contribution of each diffuson
survives in Eq. (9). For ~ && 6, only the two-diffuson
diagram (n = 1) is relevant [5] so that (with Zs = i)

R(s) = —(n Ps ) (10)
The sum rule (5) allows one to calculate ((6N) ) in

the energy interval where (N) » 1 using only the per-
turbative result (10). One represents the first term in Eq.
(6) as —2 (N) f/' R(s) ds which is a constant of order l.
The second term in Eq. (6) diverges only logarithmically.
Restricting it to the perturbative region with a cutofF at
ski, one reproduces the Wigner-Dyson result [1] with
the accuracy up to a constant of order 1:

((6N)') =, ln(N). (11)

For F ~ 1/rii, this result does not hold in the metal

[5] where such a width is unreachable in the universality
limit (2), though. On the contrary, at the mobility edge

1/r~ and any interval with (N) && 1 has the width

E » 1/rri That i.s why one expects the variance ((6N)s)
to deviate drastically from that in Eq. (11).

At the mobility edge, P(u, q) may be expressed as

P(u), q) = D(u), q) qz —i~ (12)

which is the most general expression compatible with
the particle conservation law. Although the exact dif-

fusion coefBcient D(u, q) here is unknown, the scaling
and analytical properties of the difFusion propagator en-

able us to determine R(s) for s » 1. Since the propa-
gator P(t, r —r'), that is the space-time Fourier trans-
form of P(u, q), is nonzero only for t & 0 (causal-

ity) and real, P(u, q) is analytical in the upper half-

plane of the complex variable ~ and satisfies the relation
P'(~, q) = P( ~, —q). Usin—g also the spatial isotropy,
one has P'(u, q) = P( ur, q). —

At the mobility edge in the limit L ~ oo, the scaling
arguments allow one to express P(~, q) in terms of the
dimensionless scaling function F depending on qL, the
ratio of the only two lengths characterizing the system

[11]. Here I is a characteristic length of the displace-
ment of a difFusing particle for the time u i. At the
critical point, a dimensional estimation yields

D(u)) oc L oc (u' (14)

(u)vo)

With the standard definition L = ~D(~)/~~i~, Eq. (13)
reproduces the well-known scaling result [12]

tains an infinitesimal imaginary part, and the function
F(z) is analytical for Rez ) 0 and satisfies the condition

F'(z) = F(z') (16)

In the static limit P(u -+ 0, q) oc q at the critical point
[13]. In the opposite limit, L q « 1, the difFusion propa-
gator has the form (12) with the diffusion coeIBcient (14)
depending only on u. That results in the ssymptotics

d( ( "Re F (-iqk;") .

A dimensional estimation of this integral would give b, /u
so that R(s) ~ 1/s. Having substituted this into Eq. (6),
one would obtain ((6N)z) (N) ln (N) which is strictly
prohibited by the sum rule, as shown above.

However, it follows from Eq. (16) that the real part of
the product of F functions in Eq. (18) is an even function
of (. Thus, the integration over ( can be extended to the
whole real axis. Taking into account the asymptotics

(17) and the analyticity of the function F(—i() in the
upper half-plane of the complex variable (, one concludes
immediately that the integral (18) equals zero.

Therefore, R(u) = 0 for cu » b in the limit (2). For
large but finite I, one has to consider corrections to the
diffusion propagator proportional to powers of the small

parameter L /L = (uvsL") i~" = (b, /u)~~":

P(~ q) =( i~) ' —F(z)+(&/ —~) 'C'(z) (19)

where the scaling function 4(z) has the same analytical

properties as F(z)
To find p one uses Eq. (12) in the limit L q « 1. Sub-

stituting there D(~) oc L " 1+(L /L) ~"
I (resulting

from the standard renormalization group equation) in-

stead of Eq. (14), one expands the difFusion propagator

up to the first power in D(~)q /~. Comparing such an

expansion to Eq. (19), we have

(
o.iz, ized « 1,
[1+nz z-'~ ]-' = 1 —ozz-'~

~z~ && 1,

where ni 2 are real coefBcients of order 1.
Now we substitute Eq. (15) into Eq. (9), change Q for

L"f d"q~/(27')", and represent 6~ as f d~r exp(ir g q ) .
Dividing the integration over r into that over the surface

(Sg) and radius of the d-dimensional sphere, and intro-
ducing dimensionless variables k~ = q~r and ( = ~ver,
we reduce Eq. (9) to

&(-1)"IXz +i]' ~~
'" d"k

~,,i.....e,
P~zd ..". (2z )"j=l

Using the scaling relation (13), we obtain p = 1 —(vd) (20)

P(~, q) = (—i~) 'F (z), (15)

where due to the above analyticity requirements, ~ con-

Note that 1/2 &p &1 due to the Harris criterion [9].
Repeating the procedure which led to Eq. (18) with

P(~, q) given by Eq. (19), we obtain
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R(s) = —cgpP ~s z+~ (s—:~/b, && 1), (22)

where cgp is a numerical factor. For P = 1, d = 2+ e

expansion gives v = I/e and p = 2/d near d = 2. In this
case, the integrand in Eq. (21) has no odd part and cg
vanishes at d = 2.

With R(s) from Eq. (22) the integral in the sum rule

(5) is convergent, and we can use it for calculating the
first integral in Eq. (6). The second integral in Eq. (6) is
also determined by the region s (N) » 1, and we arrive
at the announced result (1), ~here aq = 2'/p(1 —p).

Since the coefficient ag must be positive, cg & 0, and
the correlator R(ar) is negative for u » A. For small
~ « 6 one can use the same zero-mode approximation
[4] as in the metal region for u «1/T~, so that the corre-
lation function R(s) should have the Wigner-Dyson form.
We can conclude, therefore, that the energy levels are re-
pelling at all energy scales.

Note in conclusion that the Wigner-Dyson statistics
can be represented as the Gibbs statistics of a classical
one-dimensional gas of fictitious particle with the pair-
wise interaction V(s —s') = —ln~s —s'[. The Poisson
statistics corresponds to V(s —s') = 0. If we suppose
that the statistics of energy levels in the critical region
can also be represented as a Gibbs statistics with some
pairwise interaction V(s —s ), then such an efFective in-
teraction may be found, using the approach developed
for the random matrix theory [1,2,14]. Thus, in order
to reproduce the asymptotics of the two-level correlation
function (22), the interaction should have the form [15]

1 —p 1
V(s —s') = cot(z p/2)2' Cgp 8 —8

(23)

This interaction is valid for s —s' » 1. For small s —s'
the interaction should be of the Wigner-Dyson form.
Therefore, V(s —s') always remains repulsive.

In order to check the conjecture about a pairwise na-
ture of the efFective interaction, one should investigate
the higher order correlation functions. If they are fac-
torizable like in the random matrix theory [2], then the
Gibbs model with the interaction (23) will describe the

Here, in contrast to Eq. (18), the integrand has an odd
]

in z part. This is the only part which contributes to the
integral (21). As this integral is a nonzero dimensionless
number, we obtain using Eq. (20)

whole statistics at the mobility edge.
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