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Resonant Impurity Scattering in a Strongly Correlated Electron Model
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Scattering by a single impurity introduced in a strongly correlated electronic system is studied by
exact diagonalization of small clusters. It is shown that an inert site which is spinless and unable to
accommodate holes can give rise to strong resonant scattering. A calculation of the local density of
state reveals that, for increasing antiferromagnetic exchange coupling, d-, s-, and p-wave symmetry
bound states in which a mobile hole is trapped by the impurity potential induced by a local distortion
of the antiferromagnetic background successively pull out from the continuum.

PACS numbers: 71.27.+a, 71.55.—i, 74.72.—h

The nature of impurity scattering in the high-T, cop-
per oxide superconductors is of particular interest for un-
derstanding their low-temperature transport properties.
For example, recent experimental studies [1] have found
that Zn impurities can change the low temperature de-
pendence of the penetration depth from a linear to a
quadratic temperature variation. A similar behavior is
seen in the temperature dependence of the Knight shift
[2]. In addition, the transport lifetime observed in mi-
crowave surface resistance measurements is impurity lim-
ited at low temperatures [3]. It is believed that Zn goes
into a planar Cu(2) site suppressing the local moment
on its site. Theoretical calculations of various transport
properties [4—6] have found that models which assume a

2 y2 gap with strong resonant impurity scattering pro-
vide a possible explanation for the experimental data.
However, the origin of this resonant scattering remains
an open question. In particular, is such resonant scat-
tering by local defects a consequence of the strong cor-
relations in the host system? Here we report the results
of numerical calculations on a t-J model with an inert
impurity. We find that an added hole can have bound
states of various symmetries as J/t increases. Thus as
the host J/t ratio increases, a local inert impurity can
give rise to strong resonant scattering.

Now, as one knows, a local impurity introduced into
a noninteracting electron system can give rise to bound
states [7]. In two dimensions on a tight-binding lattice
even an infinitesimal local repulsive (attractive) impurity
potential leads to a bound state located in energy above
(below) the band {in higher dimension it occurs when the
strength of the potential exceeds a critical value). In the
calculations of transport properties, the eKects of impu-
rity scattering are often characterized by scattering phase
shifts. For energies near a bound state the phase shift ap-
proaches 7r/2 [8] and one has strong resonant scattering.
In this case the nature of the scattering is directly re-
lated to the one-body impurity potential. Here we are
interested in the problem of an impurity in a strongly
interacting host. The central idea we would like to put
forward in this paper is the fact that an impurity intro-
duced in a strongly correlated ground state (GS) could
behave quite differently from an impurity in a weakly

interacting system. In the case of an on-site impurity
potential in a tight-binding lattice mentioned above, the
interaction is spatially located at the perturbed site, and
the resultant bound states can have only s-wave sym-
metry. However, in a many-body ground state like an
antiferromagnet (AF), the antiferromagnetic correlations
are slightly enhanced in the vicinity of a vacancy [9], and
thus the impurity produces a dynamic finite range poten-
tial. Bound states of various symmetries can then result
as we shall show in this paper, Furthermore the occur-
rence of these states depends upon the strength of the
correlations in the host.

An inert site introduced in a two-dimensional AF back-
ground can be described by the following Hamiltonian:

2 = J) (S; S~ —4n;n;)
(0)

t ) PG(cI—,c;,, + H.c.)Pg, (1)
(V) ~

where the notations are standard and the prime means
that the sum over the nearest neighbor links (ij) is re-

stricted to the bonds not connected to the impurity site.
The kinetic term of {1) describes the motion of extra
empty or doubly occupied sites in the large-U limit of
the Hubbard model. For simplicity, in the following we

shall call "holes" either of these entities (cI, is the hole

creation operator). The impurity model can be obtained

' IA

I"IG. 1. Schematic picture of the A-8 lattice around the
impurity. A down spin removed at the impurity site leads to
an excess 1/2 spin.
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continuously from the uniform model (large-U Hubbard
or t J-models) by gradually turning off the hoppings on
the four bonds connected to a given site 0. Eventually
for vanishing couplings the impurity spin becomes frozen,
e.g. , So ———1/2 (formally, this can be achieved by adding
an infinitesimal magnetic Beld). In other words, if a va-

cant site is introduced in a strongly correlated host by,
let us say, removing a down spin at site 0 then an excess
S* = 1/2 is left over as depicted schematically in Fig. 1.
In this case the scattering of an extra hole added to the
system can occur in two different spin channels S' = 0 or

!

S' = 1. However, since the S' = 1 sector involves triplet
states of higher energies we shall restrict ourselves later
on mainly to the S, = 0 scattering channel. The follow-

ing results are obtained by exactly diagonalizing small
4x 4, ~18x ~18, ~20 x ~20, and ~26 x ~26 clusters by
a standard Lanczos method. We will measure energies in
units of t.

Let us now formally construct the impurity state by
removing a spin —00 at site 0 from the AF and having
the spin system relax around the impurity. The local
hole density of states at a site i away from the impurity
site is given by

' co+i~ —H+Eo ~ "
with [

4z™~) the impurity GS. Note that the energies are
I

measured with respect to the GS energy at half filling
Eo™. An equivalent expression for the local density of
the pure AF system is obtained by replacing "imp" by
"pure" and omitting oc. In the pure case, an interest-
ing structure appears at the bottom (top) of the upper
(lower) Hubbard band with increasing coupling J. In-
deed, recent exact calculations on various cluster sizes

[10j have shown that a quasiparticle band of width J
survives with increasing system size [see also Fig. 2(f)j.
Our first motivation here is to investigate the influence
of the impurity on this band structure.

At this stage it is useful to notice that the local density
of states obeys the following sum rule,

f
+oo

N(' '(~)oku = —+0(Sf), (3)

where ( )o stands for the expectation value in the AF

(2)

GS. In the pure system, a small tunneling between the
two Neel GS (for a finite system) leads to a zero expec-
tation value of S for any site. However, the impurity
breaks translation symmetry and the removal of a spin
at site 0 imposes a local AF spin environment around it.
In this sense the vacant site acts like a magnetic impu-

rity of spin —pro. The local density of states N, ,
' at all

nonequivalent sites of a 20-site cluster at an intermediate
coupling J = 0.5 is shown in Figs. 2(a)—2(e) and (S,')s is
indicated for each case (assuming, e.g. , as ——n =t' as in
Fig. 1). The same quantities in the pure case are shown

in Fig. 2(f) as a reference. If we assume that the "down
spin" impurity lies, let us say, on the A sublattice then
the total (integrated) density for the up spin is signifi-

cantly larger on the B sublattice according to (3) and
reflects the local AF spin environment. Specially inter-
esting new features also appear on the B sites, namely
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FIG. 2. Local density of states on various lattice sites at distances Ri from the impurity site on s ~20 x ~20 cluster forJ = 0.5. The energies of the d-, s-, snd p-wsve bound states sre indicated by thin dashed lines. The lower edge of the (upper)
Hubbard band of the pure system is shown as a reference by a thicker dashed line. The expectation values of S&' on the sites
are indicated on the plots.
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sharp resonances reflecting the presence of bound states.
Indeed, a comparison of Figs. 2(a) and 2(d) with Fig.
2(f) reveals that some peaks lie below the bottom of the
qussiparticle band of the pure system and are somehow
disconnected from the band (at higher energy). These
features do not appear on the A sites since the density
for the up spins is low on these sites. However, we note
that these bound states are rather extended in space and
clearly Fig. 2(d) shows that their wave functions are not
just restricted to the nearest neighbor sites.

We have carefully studied the spin and the spatial
symmetries of these bound states. Actually, the local
density of states is obtained by decomposing the local
hole operator into its symmetric components, c;,

(JV~) i1'2c~ where o; labels the irreducible point
group representations [11]and JV; are normalization fac-
tors such that P (JV~) i = 1. The calculation of the
density of states is then made separately in each symme-
try sector and the various components added afterwards
with the appropriate weights, N;

' = Q (JV; ) N;
where N, ,

' ' is the density of states in the n-symmetry
channel defined by substituting the new operators c;
in (2). Note that each of these symmetry components
independently satisfies the sum rule (3).

The low energy peaks observed in Fig. 2 correspond
to bound states of difFerent spatial symmetries as we
shall discuss here. However, as mentioned above, they
all appear in the singlet sector, i.e. , for o = oII. For
a more quantitative analysis we define the binding en-

«gy by, &B = (@i1,s @ti ) (@ih'II @c )
the subscript "lh" refers to the single hole GS (with or
without the impurity). b,~ corresponds to the difFerence
between the energy of an impurity and a mobile hole
confined in the same cluster and their energy when they
are separated in two difFerent clusters. The GS energies
E~~&'s —Ez~"" of a single hole moving in a pure AF back-
ground have been calculated elsewhere [12] for the same
clusters. As seen in Fig. 2 the various resonances are
located within b,~ from the bottom of the pure quasi-
particle band. Since b,~ & 0 these peaks emerge betoIs

the continuum in the gap and hence correspond to actual
bound states. In other words, an added hole can gain en-

ergy by binding to the impurity in order to reduce the
magnetic energy loss.

Since the phenomenon of binding is a fine balance be-
tween delocalization energy and magnetic energy there
is naturally a critical value J, of J above which it sets
in. In Fig. 3(a) we show B~ vs J for various cluster
sizes for the d-wave channel. The values of J, for our
clusters are quite small, between 0.1 and 0.2. However,

J, slightly increases (almost uniformly) with system size
and we expect the actual value to be of the order of 0.3.
It is interesting to notice that the binding energy of a
single hole to the impurity is signi6cantly smaller than
the binding energy of a moving pair of holes [13] as seen
in Fig. 3(a). Hence, a collective delocalization of both
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FIG. 3. (a) Binding energy of the d-wave bound state for

several cluster sizes vs J. The dashed curve corresponds to
the binding energy of a pair of mobile holes on a 26-site cluster
in an AF background (see Ref. [13]). (b) Binding energy of
the d-, 8-, and p-wave bound states on a 20-site cluster vs J.
The dashed curve corresponds to the binding energy of a pair
of mobile holes on the same cluster (see Ref. [13]).

objects can strengthen even more the attractive effective
potential. In addition, for a finite hole density, i.e. , in
the metallic state, we expect that the critical value of J,
will be increased and that resonant scattering will occur
in place of bound states at lower J.

For increasing coupling J-, d-, s-, and p-wave bound
states successively appear [14] (negative value of 4~)
in the range 0.15 & J & 0.25 as seen in Fig. 3(b).
The largest (absolute) value of the binding energy is al-

ways obtained in the d wave channel. However, note that
above a rather small critical value of 0.25 (for 20 sites)
all bound states of d, s, and p symmetry coeIdst. As
mentioned previously, we expect the actual critical value
of J for the onset of binding to be slightly larger in the
thermodynamic limit.
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FIG. 4. Hole density on the difFerent nonequivalent 20-

site cluster sites vs J. An extra hole has been introduced into
the cluster in addition to the impurity.

The distribution of the hole charge density around the
impurity gives useful insights about the bound state wave
function. The charge density on some nonequivalent sites
is shown in Fig. 4 for the lowest energy d-wave bound
state as a function of J. Above J„when binding sets
in, the charge density becomes maximum on the near-
est neighbor sites of the impurity. Hence, the hole wave
function becomes localized around the impurity site. We
also note that a signi6cant hole density is present on the
4 sites at distance ~2 although this amplitude is not as
big as in the case of a moving hole pair [15]. A priori,
this could seem surprising since the density of states in
Fig. 2(b) does not show any significant weight at the d-
wave bound state energy. In fact, this simply means that
adding the extra hole to the impurity GS on these partic-
ular sites produces a very small overlap with the actual
d-wave bound state. Such a large amplitude on the next
nearest neighbor sites can only be obtained by adding the
hole at distance 1 from the impurity and by having the
system relax to its GS configuration. Such retardation
effects were also observed in the case of a bound pair of
holes propagating on the lattice [15].

We conclude by summarizing our findings. In the pres-
ence of an inert site, the extra spin 1/2 created by remov-
ing a down spin at site 0 is distributed. As seen from
the values of (Sz) listed in Fig. 2 for J = 0.5, the total
lattice spin deviation of 1/2 spreads largely over the sites
of the v 20 x v 20 cluster. The notion that the introduc-
tion of a nonmagnetic Zn site can induce moments on the
surrounding Cu sites has been discussed by Finkel'stein
et al. [16], who used a holon-spinon description. When
a hole is added to the system containing an impurity,
d-, s-, and p-wave bound states successively appear as

J increases. The largest binding energy is obtained in

the d-wave channel. The dynamic nature of this strongly
interacting system provides a collective potential which

depends not just on the impurity potential and the band-
structure hopping parameter t, but rather in an essential

way on the exchange correlations determined by J. This
suggests that the postulated resonant scattering from Zn

impurities introduced in the Cu02 plane of the cuprates
may arise in a natural way from the strong correlations
of the host.
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