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The self-dual Einstein equation (SDE) is shown to be equivalent to the two dimensional chiral
model, vrith gauge group chosen as the group of area preserving difFeomorphisms of a bvo dimensional
surface. The approach given here leads to an analog of the Plebanski equations for general self-dual
metrics, and to a natural Hamiltonian formulation of the SDE, namely that of the chiral model.
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Since the pioneering works on the Korteweg-de Vries

(KdV) equation, two dimensional integrable models have
been studied extensively and there a number of books
that discuss the developments [1—3].

There are some basic features shared by all the models
which provides the clues to integrability. One of these is
the existence of two difFerent Hamiltonian formulations
for the same equation. This feature allows a systematic
way to construct the conserved quantities and to prove
that these are in involution. Another is the existence of
the linear Lax form of the nonlinear equations. This is
basically the same as the two dimensional zero curvature
conditions that lead to the nonlinear equations. An ex-
ample of this is the derivation of the KdV equation from
an SL(2,R) zero curvature condition using a particular
parametrization of the gauge field [2].

More recently it has been demonstrated that many
integrable equations are also derivable from Yang-Mills
self-duality conditions in four dimensions. For exam-
ple, using again various parametrizations of an SL(2,R)
gauge field, and this time imposing self-duality on the
curvatures followed by a dimensional reduction to two
dimensions, it has been shown that one can obtain the
KdV, sine-Gordon, and nonlinear Schrodinger equations
[4—6]. It has also been shown that one dimensional re-

ductions of the Yang-Mills self-duality conditions lead
to various known classical equations depending on the
choice of gauge group [7).

The self-dual Einstein equation (SDE) is another sys-
tem studied extensively. Plebanski [8] has given an ele-

gant formulation of these equations in terms of one func-

tion of all the spacetime coordinates, referred to as the
heavenly equations. There are indications that this sys-
tem is entirely integrable [9] although it has not yet been
shown to have the standard features associated with in-

tegrability that are mentioned above. There are a num-

ber of interesting results associated with these equations.
Using a form of the SDE [10] suggested by the Ashtekar
Hamiltonian variables for general relativity [11], a con-

nection with the self-dual Yang-Mills equation has been
demonstrated [12]: the SDE may be obtained from a 0+1
dimensional reduction of the self-dual Yang-Mills equa-
tion when the gauge group is chosen as the group of vol-

ume preserving diffeomorphisms of an (auxilliary) three
manifold. Another result is that the 6eld equation for

the continuum limit of the Toda model is the same as
the SDE for a special ansatz for the metric [13]. A fur-

ther connection with two dimensional theories has been
the derivation of the Plebanski equation [8] for self-dual
metrics from a large N limit of the SU(N) chiral model

[14].
In this Letter it is shown how the chiral model field

equations may be derived in a simple and direct way
from the (unreduced) SDE. The starting point will be
the relatively new way of writing the SDE in a 3+1 form

due to Ashtekar, Jacobson, and Smolin [10].
The chiral field g(z, t) is a mapping from a 2D space-

time into a group g. The dynamics follows from the La-

grangian density

Bp(g BIJg) = 0.

If we define the Lie algebra valued 1-form A„:=g B„g,
then this equation of motion becomes

B„A„=0. (3)

Since A„by definition has a pure gauge form, it follows

that

F„=B„A„—B A„+ [A„,A„] =0. (4)

Associated with the gauge field A„ there is also the co-

variant derivative

The chiral model describes flat connections A„satisfying
B„A„=0. Equations (3) and (4) are the first order forms

of the field equation (2).
The SDE can also be written in a Grst order form us-

ing the Ashtekar Hamiltonian variables for general rel-

ativity [10]. Self-duality is the essential ingredient for

this canonical formulation and it is natural to ask how

the SDE looks in it. The phase space coordinate is the
spatial projection of the (anti)self-dual part of the spin
connection and its conjugate momentum is a densitized

I = —,'Tr(B„g 'B„g)rl"",

where rl"" is the flat Minkowski or Euclidean metric. The
equations of motion are
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dreibein. The same is true for Euclidean or (2,2) signa-
tures, or complex general relativity, which are the cases
of interest for self-dual Riemann curvatures.

In these Hamiltonian variables, we would like to know
what is the phase space condition corresponding to the
vanishing of the (anti)self-dual part of the four dimen-
sional Riemann curvature. The answer is that the spatial
projection of the latter must be zero. The vanishing of
this spatial projection, when substituted into Ashtekar's
3+1 evolution equations leads to the new form of the
SDE. It is straightforward to verify that this condition
remains zero under the Hamiltonian evolution. The re-
sulting equations on four-manifolds M = Zs x R may be
written in terms of three spatial vector fields V,

' on Zs:

DivV; = 0,
BV; 1= 2e,~g[V~, Vg]',

where the vector indices have been suppressed. This
shows a rather direct analogy between the self-dual Yang-
Mills and Einstein equations, namely, the Yang-Mills cur-
vatures in Eqs. (10) and (ll) are replaced by the Lie
brackets of the vector fields. [This analogy has been
noted in a related way in Ref. [12], and Eqs. (13) and

(14) have also been studied in Ref. [17) from a different
viewpoint than that below. ]

We now show how the SDE may be written as a chiral
model field equation. Fixing a local coordinate system
t, x, p, q, the volume form is ~ = dt A dx h dp A dq, with
respect to which we define the divergence in Eq. (6). We
take now the following divergence free form for the vector
fields T, Z, M, V in terms of two functions, Ap(t, x, p, q)
and Ai (t, x, p, q):

~ail z-= l(8 i
E, Bt) (Bxp

where the divergence is defined with respect to a constant
auxiliary density and the right hand side of (7) is the Lie
bracket. The self-dual four metrics are constructed from
solutions of these equations using

g' = (detV) '[V'V~6'~+ Vp'V~] (8)

+as=2&g +wcd

on a complex manifold. Replacing the (local) complex
fiat coordinates xp, ..., xs by the linear combinations t =
xp + ixi, u = xp —ixi, x = xz —ixs, and v = xz + ixs,
Eq. (9) becomes

Here i,j, k = 1,2, 3 label the vector field, G, 5, ... are ab-
stract vector indices, Vp' is the vector field that is used to
perform the 3+1 decomposition, and BV, /Bt = Vp BgV, .
The time derivative in (7) can be written in the more
general form [Vp, V;]'. (For details of the derivation of
these equations the reader is referred to [10] where they
were originally derived, or the review in [15].)

The starting point will be the SDE in the form (6)
and (7). We first rewrite Eq. (7) in a form similar to
that suggested by Yang [16] for the self-dual Yang-Mills
equation

/81' ~, (8 )+o'BsAp, V =
I ~

+n'BbAi,
&Bx)

cP Bb BpAi —BiAp+ (Ap) Aij
cP Bg BpAp + BiAi = 0,

(16)

(17)

where the bracket on the left hand side of Eq. (16) is the
Poisson bracket with respect to n

(Ap, Ai):= a B~ApBsAi = 8&ApB&Ai —8&ApB&Ai,

(18)

and Bp, Bi denote partial derivatives with respect to t, x,
etc. Equations (16) and (17) imply that the terms in
their square brackets are equal to two arbitrary functions
of t, x, which we write as

where a~~ = (8/Bp)~' (8/Bq)~l is the antisymmetric
tensor that is the inverse of the two form (dp h, dq)~~
in the (p, q) plane. (This form for the vector fields is
similar to but more general than that used previously by
the author in Ref. [15), where one-Killing-field reductions
of the self-duality equations are discussed. ) Substituting
Eqs. (15) into (13) and (14) gives

F~ ——I'„„=0,

Fg„+ I' „=0.

2 = Vp+ iVi,
L = V2 —cV3,

M = Vo —iVj,
V = V2+iVs,

For the SDE, defining in a similar way

(10)
(11)

(i2) Gp(t, x, P, q):= Ap + G, Gi (t, x, p, q):= Ai —F,

BpAi —BiAp+ (Ap, Ai) = BpF(x, t) + BiG(x, t), (19)
BpAp + BiAi = BiF(x, t) —BpG(x, t) (20)

[where F(x, t), G(x, t) are arbitrary]. With the redefini-
tions

the evolution equations (7) become

[&,&] = [M, V] = 0,

[r,u]+ [X,V] = 0,

(i3)

(14)

Eqs. (19) and (20) become

BpGi —BiGp + (Gp, Gi) = 0,

BpGp + BiGi = 0.

(21)

(22)

(23)
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These are precisely the chiral model Eqs. (3) and (4)
on the x, t "spacetime, " with p, q treated as coordinates
on an "internal" space, and with the commutator in (4)
replaced by the Poisson bracket with respect to o.o~. The
gauge group is therefore the group of transformations
that preserve n on the internal p, q space. [Note that
the redefinitions (21) do not alter the vector fields Lt, V
in Eqs. (15).]

There is an important question regarding the relation
between the full SDE (7), and the chiral model equations
(22) and (23) derived from them. How general is the form

(15) for the vector fields? We can see that the two first
order equations for ap, ai are equivalent to a single second
order equation for a function A(t, x, p, q). Equation (23)
implies

Gp = BiA, ai = —BpA. (24)

With this the vector fields 2, V in Eq. (15) become

B B B
M = ——A, q

—+A,„—,
Bt *'Bp *"Bq'
B B B

V = +A„——At„—,
Bx 'Bp "Bq' (25)

and Eq. (22) becomes

Att + A + A pAtq —A qAt„——0 (26)

(where the subscripts denote partial derivatives). Equa-
tion (26) is one equation for a function of all the space-
time coordinates and therefore does not represent any
reduction in the local degrees of freedom for self-dual
metrics. Using Eq. (8) the line element is

dsz = dt(Atpdp+ Atqdq) + dx(A~„dp+ A,qdq)

(A,„dP+ A,qdq)z
tl XJ

+ (A,„dp+ A«dq)'. (27)

For comparison, and to see the generality of the form

of the vector fields used in Eq. (25), we note how Pleban-
ski's first heavenly equation for general self-dual metrics
may be derived from Eqs. (13) and (14) [17]. Working
again in specific coordinates and taking the same form
for T, Z as in Eq. (15) [which solves the first of Eqs.
(13)], let, for some function A(t, x, p, q),

(28)

0 „n]q —0 qn, „=l. (29)

The vector fields (28) solve Eq. (14), while the second
equation in (13) leads (after a few steps) to Plebanski's
first equation

A comparison of Eqs. (25) and (28) shows the vector
fields M, V in each equation have the same functional con-
tent. Therefore Eq. (26) is an alternative to Plebanski's
Eq. (29).

An advantage of Eq. (26) over the Plebanski one (29)
is that the former has a natural Hamiltonian formulation
which is just that of the chiral model. This Hamiltonian
formulation is given in, for example, Ref. [1] for finite
dimensional groups, and its generalization to the infinite
dimensional case of relevance here is innnediate.

There is now also the possibility of approaching the
SDE directly from the two dimensional model point of
view, and investigating integrability using the standard
methods. For example, one can derive conservation laws

[18] via this approach, and ask if there is a second Hamil-

tonian formulation just as for other integrable models.
However some remarks are in order regarding this be-

cause global spacetime considerations need to be ad-

dressed before a Hamiltonian can be written down. The
internal gauge group for the chiral model must first be
fixed to be the group of area preserving diffeomorphisms
of a specific two dimensional surface. This fixes part of
the topology of the self-dual manifold. The topology of
the two dimensional chiral model background remains to
be specified. From this viewpoint therefore, there is not
one but an infinite number of Hamiltonian formulations
specified by the gauge group and the chiral model back-
ground, with each phase space associated with a particu-
lar sector of self-dual metrics. A further question in this
regard is how large a class of solutions to the SDE results
from a given internal group and chiral model background.
Whereas the chiral model solution space is infinite dimen-

sional, the metrics derived from the solutions may be re-

lated by diffeomorphisms since the coordinates have been

only partially fixed in (15). In summary, care is needed
in making statements of a global nature given that all

derivations in this paper involve local considerations.
Investigating the quantum theory via canonical quan-

tization may also be of interest since the SDE consti-
tute the largest midi-superspace model. The existence of
an infinite number of conservation laws for this system

[18—20], unlike the full Einstein equations [21], leads to
the possibility of an infinite number of fully gauge invari-

ant classical observables to represent as linear operators
on the Hilbert space of the theory. A proper quantiza-
tion should lead to a description of quantum "nonlinear
gravitons" [9].

In summary, we have shown how the chiral model field

equations can represent the full SDE starting from the
Ashtekar- Jacobson-Smolin form of the latter. This result
also gives an alternative to the Plebanski equations.
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[1] L. D. Faddeev and L. A. Takhtajan, Harniitonian Meth
ods in the Theory of Solitons (Springer-Verlag, Berlin,

802



VOLUME 72, NUMBER 6 PHYSICAL REVIEW LETTERS 7 FEBRUARY l994

1987).
[2] A. Das, Integrable Models (World Scientific, Singapore,

1989).
[3] A. C. Newell, Solitons in Mathematical Physics (SIAM,

Philadelphia, 1985).
[4] R. S. Ward, Nucl. Phys. B236, 381 (1984).
[5] L. J. Mason and G. A. J. Sparling, Phys. Lett. A 137,

29 (1989).
[6] I. Bakes and D. A. Depireux, Int. J. Mod. Phys. A 7,

1767 (1992).
[7] S. Chakravarty, P. A. Clarkson, and M. J. Ablowitz,

Phys. Rev. Lett. B5, 1085 (1990).
[8] J. Plebanski, J. Math. Phys. 1B, 2395 (1975).
[9] R. Penrose, Gen. Relativity Gravitation 7, 31 (1976).

[10] A. Ashtekar, T Jacobson, and L. Smolin, Commun.
Math. Phys. 115, 631 (1988).

[11] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986); Phys.
Rev. D 36, 1587 (1987).

[12] L. Mason and E. T. Newman, Commun. Math. Phys.

121, 659, (1989).
[13] I. Balan and E. Kiritsis, in Topological Methods in Field

Theory, edited by W. Nahm, S. Randjbar-oaemi, E. Sez-
gin, and E. Witten (World Scientific, Singapore, 1991).

[14] Q. H. Park, Phys. Iett. B 236, 429 (1990); Phys. Lett.
B 238, 287 (1990).

[15] V. Husain, Classical Quantum Gravity 10, 543 (1993).
[16] C. N. Yang, Phys. Rev. Lett. 38, 1377 (1977).
[17] S. Chakravarty, L. Mason, and E. T. Newman, J. Math.

Phys. 32, 1458 (1991).
[18] V. Husain, Report No. Alberta Thy-47-93 [Classical

Quantum Gravity (to be published)].
[19] T. A. B. Strachan, Classical Quantum Gravity 10, 1417

(1993).
[20] J. D. E. Grant, Report No. DAMPT-R92/47 (to be pub-

lished).
[21] C. G. Torre and I. M. Anderson, Phys. Rev. Lett. 70,

3525 (1993).

803


