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Topological Entropy of One-Dimensional Maps: Approximations and Bounds
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We present a method for computing the topological entropy of one-dimensional maps. As an approxi-
mation scheme, the algorithm converges rapidly and provides both upper and lo~er bounds.

PACS numbers: 47.20.Ky, 05.45.+b

The topological entropy of a dynamical system was in-

troduced in the sixties as a quantity that is invariant un-

der continuous changes of coordinates [1]. It has better
continuity properties than other indicators of the degree
of chaos, the Lyapunov exponents or the metric entropy,
on which it is an upper bound. Further, the topological
entropy is well suited to the theoretical description of the
transition to chaos. For many families of maps, the tran-
sition to complex behavior is reflected in the topological
entropy as a second-order phase transition [2] (see Figs. 1

and 2). Thus the topological entropy has figured increas-

ingly in quantifications of chaos and discussions of the
physical eff'ects of chaos. In dynamo theory, for example,
it has been shown that the topological entropy of a fluid

flow is an upper bound on the rate of growth of the mag-
netic energy [3].

The uses of the topological entropy, especially to mea-
sure the degree of chaos, provide an incentive for develop-

ing good alogorithms for calculating it. We present here
a usable, effective scheme for estimating and bounding
the topological entropy, rt, of a piecewise monotonic map
of the unit interval. In comparison to known schemes
[4-6], the method is more flexible in treating maps with

multiple turning points, with at least as much precision.
Our method works for circle maps and can be adapted for
maps on graphs. Maps with plateaus can also be treated
as discussed here, but we exclude them for brevity.

Points of the interval for which a map is an extremum
are called turning points, including the end points of the
interval considered, and piecewise monotonic maps have a
finite number of these. The locations of neighboring
turning points divide the interval into segments called
laps. For a piecewise monotonic map, f, the topological
entropy is given by the exponential rate of increase with n

of the monotonic upper bounds of any of these quantities:
(a) the number of turning points of f", (b) the length of
the graph of f", and (c) the number of periodic orbits of
f". For such maps, these properties are equivalent [7] to
the standard definitions [8].

The paradigm of piecewise monotonic maps is the fam-

ily of sawtooth maps, whose slopes have constant magni-
tude, s, every~here. An important special case of these is
the family of tent maps

s(x —1)+2 for 0~ x & (s —1)/s,
f,(.) =

s(1 —x) for (s —1)/s ~ x ~ 1 .

According to property (b), the entropy of any sawtooth

map with slopes + s is simply lns.
The central object in our method is the topological

transfer matrix, M. To define it, we partition the unit in-

terval, I, by an ordered set of points (xo,x t, . . . , xk+ t) so
that I = [xo,xk+ t] is subdivided into subintervals

I;=[x;,x;+t]. While the subintervals I; are not neces-

sarily laps, some of them may contain more than one lap.
We further partition such subintervals by the turning
points they contain, and we let I,' be the lth lap contained
in I;. The elements of M are then defined as

If(r,') ~ r, I

Ir, I

where II;I is the length of the interval I;. Thus m;t is the
fractional amount by which f(1;), the image of I;, covers
the interval IJ, giving suitable weight to any portion that
is multiply covered. Such matrices can be used in various

ways; for example, in the study of invariant measures [9].
In the case of sawtooth maps on the interval [O, l] with

local slopes s, it is readily verified that the matrix
M =(m;i) has the eigenvalue s, the antilog of the topo-
logical entropy, with corresponding eigenvector (IIOI,
II~I, . . . , Irk I) . It follows directly from the Perron-
Frobenius theorem [10] that this is the maximum eigen-
value.

The formula for m;I is complicated because we allow

for multiple covering of the target interval. We may
avoid this complication by including all of the turning
points of f in the partition when their number is not too
large. An effective way subsequently to refine the parti-
tion to improve the accuracy is suggested by another class
of maps for which the topological entropy is known exact-
ly. These are the Markov maps, in which the orbit of
every turning point is finite.

This time we choose the partition by forming an or-
dered set of points, [xo, . . . , xk+ t], from the turning
points and their orbits. Then, for each pair of subinter-
vals, (I;,rt), it can be seen on constructing the partition
that either f(1;) covers I; completely or the intersection
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of I; with f(I;) is empty. Hence the matrix M, defined as
before, has only 0's and 1's as entries. In this case, it is

known that the entropy for the Markov map is given by
the logarithm of the maximal eigenvalue of M [11].

For both the general Markov maps with suitable parti-
tions and for sawtooth maps, the largest eigenvalue of M
is the antilog of the topological entropy. These results
highlight the significance of M. We are led to construct
the topological transfer matrix for general piecewise
monotonic maps by specifying suitable partitions of I.
Several are possible, but one modeled after the Markov
example combines accuracy with ease of construction.

Consider a piecewise monotonic map, f, whose turning
points lie at the locationsyz, p=1,2, . . . , P. For our par-
tition of the interval, we now make up the ordered set of
points x; from the turning points and their images,
f4(y„), q =0, 1,2, . . . , g(p) —1, counting coincident
points only once. Now, at any level of refinement, we
have k =Jr g(p) points in our partition. As we iterate
each turning point in such a way that min„g(p) in-

creases, the partition approximates better and better to a
Markov partition. In the examples discussed below, we
consider the invariant pieces of the map, and so, as in the
Markov case, the limits of the interval belong to the or-
bits of other turning points. Hence the end points need
not be treated as distinct turning points. In such cases,
we take Q to be independent of p. The number of parti-
tions is then given by k PQ where we further write
N k —

1 and speak of the Nth level of approximation.
In the exceptional case where a turning point has a finite
orbit we consider only the intervals of finite length.

As in (2), we introduce the fraction by which the map
of I; covers IJ and compose the matrix with entries, m;i.
Once again, the entries in the matrix M are mostly 0's

and 1's. However, in non-Markovian cases, some col-
umns may contain subcolumns of the form (a; J,a;+i i,

. . . ,a;+~ 1 ) where a; I )0 and gk -na;+k i ( 1. The
first key result is that the ln+ of the largest eigenvalue of
M is an approximation to the topological entropy with an

error that decreases with increasing N, where ln+X
means the larger of zero and lnX.

More importantly, it is also possible to put bounds on

the topological entropy with this partition. To see this,
we associate to the subcolumn (a; i,a;+l,j, , a;+~,~. )
of M of length rn, the m simplex, that is, the set of points
(Xn, . . . ,X ) in IR

+' with X„)0 and QX„=I. The
extremities of this simplex are at the points Pn = (I,O,

0, . . . , 0), Pi (0, 1,0, . . . , 0), . . . , P -(000, . . . ,
1)~. For m -0, we set Pa=0 and Pi = l.

We generate a set of matrices by replacing each sub-

column (a; J,a;ii J, . . . , a;+ J)T in M from a given lap
by every possible P„of the appropriate length, in all com-
binations. If we compute the largest eigenvalues of all

the matrices so obtained, we get a collection of numbers
whose extrema give lower and upper bounds for the larg-
est eigenvalue of M, which follows in consequence of the
Perron-Frobenius theorem. As can be shown from the
kneading theory of Milnor and Thurston [12], these ex-
trema give upper and lower bounds on the topological en-

tropy, and these bounds improve when we use longer or-
bits of the turning points for our partitions. In certain ex-
amples, partitions may contain cells of zero length and a
consistent criterion for computing m;i may be needed to
allow for this.

By way of illustration, we show in Fig. 1 the calcula-
tion of the entropy exponent X, the greatest eigenvalue of
M, for the quadratic map, f(x) =1 —ax . The main

panel shows the approximate value of )i, for N =2, 3, 4, 5,
and 10. The inset shows the entropy exponent for N =10,
15, 20, and 25 near the accumulation point of period dou-

bling. In addition, the points marked by stars are ob-
tained by the longer, ultimately exact calculation using
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FIG. I. The entropy exponent for the quad-
ratic map f(x) I

—ax 2. The main panel
shows the exponent calculated as the leading
eigenvalue of the topological transfer matrix
with N=2, 3, 4, 5, and l0. In the inset, the
piece of the parameter range near the period-
doubling accumulation point is shown in

greater detail for calculations with JV l0, l 5,
20, and 25. The points marked by stars show
the result of a calculation with kneading se-
quences, which would not be distinguished
from the N = l0 curve in the main panel in the
parameter range outside that shown in the in-

set.
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FIG. 2. The entropy exponent for the bimodal cubic map
f(x) x +ax+b with b 0.2. The two panels show the ap-
proximation for the exponent (the continuous curve) and its two
bounds (the dotted curves) for JV 10 and N 20.

FIG. 3. The logarithm of the reciprocal of the error in the

approximation as a function of a for the cubic map (b 0.2),
estimated as the difference between the two bounds. Drawn in

this way, it measures the number of digits of accuracy.

kneading sequences [4]. These are not reproduced in the

main panel since they fall indistinguishably close to the

calculation for N 10 in the parameter regime outside

that drawn in more detail in the inset. For N =2, which

for some purposes may yield the topological entropy to
suScient accuracy, we can write the largest eigenvalue

simply as
r

[1+Jl+4a(1 —a) ]/2 for a ~ a~,

fitted splines through the measurements shown in Fig.
3(d) of Hayashi et al. [13],and the result is shown in the
inset panel of Fig. 4, together with a set of points generat-
ed by iterating the map and adding some random noise.
This example illustrates the ease of calculating the topo-

50

[p+vlu +4a (a —1)(2—a)]/2(1 —a) for a &a~,

(3)
35-

+ 25 —4621
54

25+ 4621
54

where p =a(l —a) +a —2 and
-

~/3

= 1.755. . . (4)
5

is the value of a such that f has a period-three orbit con-

taining the critical point, that is, the value of the parame-

ter where the structure of the matrix M changes.
In Fig. 2, the entropy exponent is shown for the bimo-

dal map, f x ax+b, for b —0.2 and various values of
a. Results are shown for N 10 and N 20, and both

the approximation and bounds are displayed for each.
(Calculations for this case are also given by Bloch and

Keesiing [5].) The convergence properties of the method

are shown in Fig. 3, which portrays the logarithm of the

reciprocal of the error, estimated as the difference be-

tween the upper and lower bounds. This is equivalent to
the number of digits of accuracy. In practice, the error in

the largest eigenvalue of M is even smaller than this esti-

mate.
For an example involving real data, we calculate the

topological entropy for the empirical firing map of a

stimulated marine-mollusc axon. The convergence with

N is shown in Fig. 4. To construct the map f(x), we
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FIG. 4. The calculation of the topological entropy for the

firing map of a sea-mollusc axon. The inset panel sho~s the

map derived by fitting splines to experimental data, and also a

set of points derived by iterating the map and adding random

noise. The main panel shows the convergence of the calculation

of the entropy exponent with N for the partition generated by

iterating the critical point, and its bounds. A slowly converging

calculation using an essentially arbitrary partitioning of the in-

terval is also shown.
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logical entropy if the absolute accuracy desired is not ex-
cessive; three or four iterations of the critical point are
suScient to tie the entropy down to within a few percent
of its true value.

Although we advocate the use of the images of the
turning points for partitions, alternative kinds of divisions
could also be used. For example, if we use backward im-

ages of the turning points, rather than forward images,
the matrix elements are again mostly either 0 or 1. The
remaining entries are all independent of one another and,
when we replace the noninteger entries by zero (or one),
the largest eigenvalue of the matrix obtained is a lower
(or upper) bound on the antilog of the entropy. This too
follows from the Perron-Frobenius theorem and kneading
theory, and makes the calculation of bounds more
straightforward. In fact, the method of Gora and Boyar-
sky [6] is similar to this particular case of our algorithm.
Unfortunately, computing preimages often requires one

to solve additional equations, and the number of parti-
tions grows rapidly as one iterates back. Such a partition
rapidly becomes impractical.

Another partition can be generated by taking a set of
periodic orbits each of which contains a point which lies
near one of the turning points [14]. This is equivalent to
approximating f(x) by a Markov map, and is accurate
when the orbits fall close to the turning points. However,
a search is required in order to find these periodic orbits,
and no bounds are given. Finally, for experimental data,
uniform or measurement-determined partitions might be
more accessible, although they produce relatively slow

convergence (as indicated in Fig. 4 by the results of an

essentially arbitrary partitioning of the firing map).
The calculation of the topological entropy of maps or

flows with higher dimension is more complicated than in

the one-dimensional examples considered here. There are
currently no effective algorithms to compute and bound h

in such situations, but property (b) above has been re-
cently extended to smooth diffeomorphisms of n-dimen-

sional manifolds [15]. In these cases, the topological en-

tropy determines the growth rate of the volumes of the
iterates of some submanifolds. This suggests that we

might be able to generalize our method to higher dimen-
sion. For certain maps and flows, one might hope to
avoid issues such as these. For example, in work to ap-
pear with G. R. Ierley we explain how to put the Henon

map and some flows in IR into forms suitable for produc-
ing topological transfer matrices, though the cost in accu-
racy caused by conversion to one-dimensional maps has
yet to be assessed.
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