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The nonlocality responsible for violations of Bell’s inequalities is not equivalent to that used in telepor-
tation, although they probably are two aspects of the same physical property. There are mixed states
which do not violate any Bell type inequality, but still can be used for teleportation.
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In his pioneering work, Bell [1] proved that in general
two quantum systems cannot be considered as separate
even if they are located far from each other. When mea-
surements are performed independently on each of the
sytems, their results are correlated in a way which cannot
be explained by any local model. Bell considered some
particular situations—two spin-§ particles in a singlet
state and equivalent cases—but later works [2] have
shown that nonseparability is generic. Any pure entan-
gled (nonfactorizable) state of any number of systems
generates nonlocal correlations.

Recently another aspect of quantum nonseparability
has been discovered. Bennett et al. [3] have shown that
two spin- 5 particles, separated in space and entangled in
a singlet state, can be used for teleportation. By telepor-
tation they mean the following. Suppose that one ob-
server, Alice, is given a spin-3 particle in a state ® un-
known to her, and her task is to help a friend, Bob, situat-
ed far away, prepare another spin-3 particle in the same
state ®. But Alice is not allowed to send to Bob the par-
ticle she was given, nor another particle which interacted
with it. Alice could perform some measurements on the
particle she is given and communicate the result to Bob,
but since she is given a single particle she cannot learn
much about its state ® from the results of her measure-
ment. On the other hand, suppose that Alice and Bob
also share a pair of spin-+ particles in a singlet state.
Then Alice can perform a combined measurement on the
particle she was given and on her singlet particle, and
communicate the result to Bob. Depending on the mes-
sage he receives, Bob performs a certain rotation on his

singlet particle and brings it into the state ®. Roughly
speaking, Bob’s success resides in the fact that actually
two different kinds of information have been sent to him.
He received classical information— Alice communicated
to him the result of her measurement—and nonlocal in-
formation, transmitted somehow through the nonsepara-
bility of the singlet pair.

These two aspects of nonseparability, the Bell correla-
tions and the capacity for teleportation, seem to be
equivalent. When the two particles constituting the non-
local channel are maximally entangled [4] (as in the sing-
let state), the unknown state ® can be teleported from
Alice to Bob with perfect accuracy. (In practice, one
should of course consider the effects of noise, and of
different errors affecting the measurements.) On the oth-
er hand, as Bennett et al. noted, states which are less en-
tangled still could be used for teleportation but they
“reduce the fidelity of teleportation and/or the range of
states @ which can be accurately teleported.” Finally, if
the two particles are in a direct product state they do not
violate any Bell inequality and are also useless for
teleportation. It seems thus very natural to make the fol-
lowing conjecture.

Conjecture.— Whenever two systems which are sepa-
rated in space violate some Bell inequality, they can be
used for teleportation, and vice versa.

In the above conjecture by ““can be used for teleporta-
tion” we mean that by using these two systems Alice can
transmit to Bob the unknown state ® better, according to
some appropriate scale, than by using only a classical
channel.
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Surprisingly enough, the above conjecture is wrong. In
the present Letter 1 will show that there are situations in
which two systems separated in space do not violate any
Bell inequalities but still are useful for teleportation. The
above situation arises when the two systems are not in a
pure state but in a mixture.

From the point of view of Bell inequalities, mixtures
have a peculiar behavior. Any pure entangled state
violates Bell’s inequalities, but mixtures of entangled
states do not necessarily violate them. Consider, for ex-
ample, a mixture of the singlet state

v =0/~ =11), (1)
and the triplet state
[eH)=0/V2)(t1+11), )]

both of them with equal weights. Both |¥ ™) and |¥™*)
are entangled—they are even maximally entangled— but
this mixture is completely equivalent, with respect to any
measurements, to a mixture of direct products

W)=t 3)
and
[w) =11 (4)

with equal weights. Since both |¥) and |¥,) are direct
products, none of them violates Bell’s inequalities, and
thus the mixture does not violate them either. Obviously,
such a mixture cannot be used for teleportation.

It is clear that any mixture which is equivalent to a
mixture of direct products does not violate Bell’s inequali-
ties. But direct products are the only pure states which
do not violate Bell’s inequalities, so one might think that
if a mixture is not equivalent to a mixture of direct prod-
ucts, it must violate some Bell inequality. Surprisingly
this is not the case. Werner, in a paper [5] too rarely cit-
ed, showed that there are mixtures which are not
equivalent to mixtures of direct products but which do
not violate any Bell inequality. All the correlations ob-
tained with such mixtures could be obtained from a local
hidden variable model. A particular case of such a mix-
ture is that of two spin-+ particles described by the den-
sity matrix

W=§1+ 5% Xv |, ()

where I is the identity operator and |¥ 7) is the singlet
state (1). When measurements of spin polarization are
performed, say in the & direction for the first particle and
in the #) direction for the second, the probability of ob-
taining the result “up,up” is

P(S}=+1,8}=+1)=1(— 1 cosa), ©)

where a is the angle between the directions é and 7).
The same joint probabilities are given by the following
probabilistic local hidden variable model. Let the hidden

798

local variable be a vector
A =sinBcosgi+sinBsing)+ cosok , @2

where 1, 3 and K are the unit vectors along the x, y, and =
axes. Both particles in each pair are given the same A,
and different pairs in the ensemble have different A’s, uni-
formly distributed on the unit sphere. That is, the distri-
bution function of the hidden variable A is

dpB) =—sin6dods . )
4n

When spin polarization measurements are performed on
each particle in a pair, each particle yields the outcomes
“up” or “‘down” according to a local scheme, without any
need to “‘communicate” with its partner. The schemes
are as follows. Particle 1 gives the answer “up” with
probability

P(S}=+11)=cos(a)/2), (9)

where a, is the angle between the directions & and A.
Particle 2 yields “up” with probability

1 if 2cos(ay/2) <1,

0 if 2cos(ay/2) > 1 | (10)

P(s} =+|,i)={
where a; is the angle between #j and A. It is easy to veri-
fy that the joint probabilities given by this local hidden
variables model,

PLav(S=+1.53=+1)
= [dp@P(si=+1DP(sE=+10), (D)

are identical to those given by quantum mechanics, Eq.
(6).

Mixtures of this type might raise an uneasy feeling.
On one hand one feels intuitively that they are nonlocal,
as they cannot be obtained as mixtures of local states
(direct products). On the other hand, this supposed non-
locality does not appear in the correlations—all correla-
tions generated by such a mixture are classical. As I will
show now, the nonseparability of these mixtures is re-
vealed by teleportation. Using particles in the mixed
state (5) one can teleport an unknown state ®, albeit not
with 100% fidelity, but better than by using only a classi-
cal communication channel.

Consider the following situation. Alice is given a
spin- 3 particle in a pure state ®, unknown to her, and
Bob is required to prepare a spin- ¥ particle in a pure or
a mixed state, as close as possible to ®. In general Bob
will not succeed in perfectly reproducing ®, but will
prepare some other state, denoted by @' if it is pure,
or by p if it is mixed. Let the measure of success— the
“score” obtained by Bob—be |(®|®")|? or, equivalently
Tr(p|®)X®|). Suppose now that this “quantum game” is
repeated many times. Each time Alice gets a particle po-
larized in a different direction, uniformly distributed on
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the unit sphere. Suppose also that Alice knows what the
distribution of directions is, but, of course, not the direc-
tion of polarization of the individual particles. The final
score of the game—the average of the scores obtained in
the different runs—is a measure of the fidelity of the
transmission. (Of course many other definitions of fideli-
ty could be given and each of them could be more ap-
propriate for studying different aspects of the transmis-
sion. But the present Letter is conceived as a counter ex-
ample: It is sufficient to find a particular aspect in which
teleportation works and Bell’s inequalities do not, to es-
tablish the inequivalence of these two types of nonlocali-
ty.)

Some typical scores are as follows. If Alice and Bob
cannot communicate at all, Bob could try to guess the
state, according to some particular scheme. (Bob is al-
ways required to prepare a particle in some state.) The
results of any such guess scheme will always [6] be .
On the other hand, if in any run, Alice and Bob are con-
nected by both a classical and a nonlocal communication
channel, the latter being formed by two spin-% particles
in a singlet state, they can perform a standard teleporta-
tion scheme. In this case the success is total, and the
fidelity is 1, the maximal possible. Finally, if Alice and
Bob are connected only by a classical channel, the best
possible score is [6] 3. A particular way to obtain this
score is the following. Each run, Alice measures the spin
along the z direction, and tells the result to Bob. Bob
prepares a particle polarized along the z axis, up or down,
according to the result of Alice’s measurement. But sup-
pose now that Alice and Bob share pairs of spin-§ parti-
cles in the mixed state (5). Then they can perform a
standard teleportation scheme and get the score of 7,
better than what could be obtained classically. Indeed,
the mixture (5) can be viewed as a mixture of 50% the
completely undetermined mixed state W= ¢/ and 50%
the pure state |% 7). When the state is completely un-
determined, the result of the teleportation is completely
random, so the score of the quantum game is ¥, while
when the state is the singlet, the teleportation is absolute-
ly successful, and the score is 1. Therefore the total score
obtained by using the teleportation procedure with the
mixture (5) is the average of the above two scores, that is

(12)

In conclusion, the nonlocality revealed by teleportation
is not equivalent to the nonlocality of quantum correla-
tions, although they are probably two faces of the same
physical property. Needless to say, the experimental
verification of teleportation without violation of Bell’s in-
equalities is more than desirable.

Many interesting questions are yet not answered.
What is the exact relation between Bell’s inequalities
violation and teleportation? Are there states which

fidelity=%x++ 3+ x1=4%.

violate Bell’s inequalities but which cannot be used for
teleportation? Is every mixed state that cannot be ex-
pressed as a mixture of product states useful for telepor-
tation? One of the main difficulties in answering these
questions is that it is not yet known which mixtures
violate Bell's inequalities. If for pure states this problem
is completely solved—every pure entangled state of any
number of arbitrary systems violates Bell's inequalities
—for mixtures not even the simplest case (two spin- ¥
particles) is solved.

Bell’s inequalities and local hidden variable models, as
usually defined, refer to joint probabilities of the results
of standard quantum measurements performed on space
separated systems. In case of spin- ¥ particles they refer
to measurements of spin along different directions
(Stern-Gerlach measurements). But there are many oth-
er things which can be done to spin-3 particles. They
could be measured in conjunction with other particles, as
in teleportation, or one can perform “weak’™ measure-
ments [7], etc. To be truly separable, two systems
separated in space must be described by a local hidden
variables model which determines the results of every
possible experiment. For the case of entangled pure
states such sophistication is not necessary— local hidden
variable models fail to account even for the joint proba-
bilities of standard quantum measurements. On the other
hand, for the mixture considered by Werner, local hidden
variables can simulate the joint probabilities of spin mea-
surements. It is then relevant to ask if the model can be
enlarged to account for the results of every possible ex-
periment or if there are some generalized Bell type in-
equalities which are violated. It is therefore still an open
question whether teleportation is equivalent or not with
violation generalized Bell inequalities.

I hope that the present result will lead to a deeper un-
derstanding of this fascinating subject which is quantum
nonlocality.

It is a pleasure for me to thank Daniel Rohrlich and
Lev Vaidman for very useful discussions.

[11J. S. Bell, Physics (Long Island City, N.Y.) 1, 195
(1964).

[2] N. Gisin, Phys. Lett. A 154, 201 (1991); S. Popescu and
D. Rohrlich, Phys. Lett. A 166, 293 (1992).
(3] C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,
and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[4] S. L. Braunstein, A. Mann, and M. Revzen, Phys. Rev.
Lett. 69, 2881 (1992).

[5] R. F. Werner, Phys. Rev. A 40, 4277 (1989).

[6] S. Massar and S. Popescu, Universite Libre de Bruxelles
Report No. ULB-TH-12/93 (to be published).

[71 Y. Aharonov and L. Vaidman, Phys. Rev. A 41, ||
(1990).

799



