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Macroscopic Quantum Tunneling of a Domain Wall in a Ferromagnetic Metal
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The macroscopic quantum tunneling of a planar domain wall in a ferromagnetic metal is studied
based on the Hubbard model. It is found that the Ohmic dissipation is present even at zero tem-
perature due to the gapless Stoner excitation, which is the crucial difference from the case of the
insulating magnet. The dissipative effect is calculated as a function of the width of the wall and
is shown to be efFective in a thin wall and in a weak ferromagnet. The results are discussed in the
light of recent experiments on ferromagnets with strong anisotropy.
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In recent years, owing mainly to the development of
technology in mesoscopic physics, there has been grow-

ing interest in macroscopic quantum phenomena in mag-
netic systems [1,2], e.g. , the magnetization reversal in

small grains [3], the quantum nucleation of a domain [4],
and the quantum depinning of a domain wall via macro-
scopic quantum tunneling (MQT) [5,6]. These studies
are mainly in ferromagnets, but recently a magnetization
reversal due to macroscopic quantum coherence (MQC)
is claimed to have been observed also in antiferromag-
netic particles of horse spleen ferritin [7]. In the case
of the quantum depinning of a domain wall pinned by
defects, the position of the wall at the pinning center be-

comes metastable in the external magnetic field, and if
the barrier height is low enough, the position tunnels out
of the local minimum. This problem was studied theoret-
ically by Stamp [5] for the case of an insulating magnet.
The tunneling rate was expressed in terms of macroscopic
variables, and was shown to be large enough to be ob-
served even for a large wall with about 10is spins. As

sources of dissipation, which is shown to be important

by the seminal paper by Caldeira and Leggett [8], Stamp
considered magnons and phonons, but the effects turn
out to be negligible, since magnons have a gap and cou-

pling to phonons is weak. Consequently it has been con-

cluded that the tunneling rate is not essentially affected

by dissipation in insulators. Concerning the dissipation
on MQT in single domain ferromagnets, dissipation due

to phonons was calculated and shown to be weak [9], and
recently it was found that dissipation by nuclear spins is

significant [10].
Experiments on MQT in magnetic systems have been

carried out in metallic ferromagnets. In metals, in con-

trast to the case of insulators, there is a gapless excitation
of spin flip, and hence dissipation from conduction elec-

trons must be very important. Consequently the quan-
tum motion of the wall in metals should be quite different
from that in insulators [11].In this paper, we will inves-

tigate theoretically the dissipative effect on MQT of a
domain wall in a ferromagnetic metal based on an itiner-
ant electron model. An important and interesting feature
of the itinerant system is that the electron, which sup-

ports magnetization, also works as a source of dissipation
in the dynamical motion of the magnetization itself. Our

analysis is based on the Hubbard model in the continuum

[12]. The calculation is carried out at zero temperature,
since we are interested only in the quantum tunnehng
present at low temperature.

The Lagrangian in the imaginary time path integral is

given by

I =) cit, (c), +et, )ct, +U) n„Tn„t, (1)
kyar X

where c„ is an electron operator at site x with spin
o'(= 6), n:—ct„~, and U is the Coulomb repul-
sion. The band energy is ei, = k /2m —eF with the
Fermi energy eF. The Coulomb repulsion term will be
rewritten by introducing a Hubbard-Stratonovich field

representing the magnetization; M„:—M~n„, where
M„—= ((cterc)„)n„, with n„being a slowly varying unit
vector which describes the direction of magnetization.
The magnitude of magnetization is assumed to be space-
time independent, M„—= M. Hence only n„remains as
the relevant degree of freedom.

The spatial variation of n„accompanied with a do-
main wall is assumed to be much slower compared to the
inverse Fermi momentum of the electron kF . For the
analysis of such a slowly varying field, a locally rotated
frame [13] of electrons is convenient such that the s axis
of the electron is chosen in the direction of the local mag-
netization vector n„. The electron operator a„~ in the
new frame is related to the original ~ as

= crcos(8/2)c„+e ' ~sin(8/2)c„, ~, (2)

where the polar coordinates (8„(r),p~(~)) param«»ze
the direction of n„(~). The electron a„ is polarized u»-
formly with the energy ek = k /2m —«M —eF

price of this transformation, there arises from the kinetic

term etc+ ]Pc[ /2m an additional term H~„q that de-

scribes the interaction of electrons with spatial variation
of the magnetization vector [13]. This interaction H;„&

is small and of the order of O(kFtA) i, where A is the
domain wall thickness, and kpy is the Fermi momentum

of the majority spin, and hence can be treated perturba-

tively. Our following results are valid for Akpt & 1.
The integration over the electron degrees of freedom

leads to the effective action for the magnetization as

S,tt = —tr ln(c) + ei, ) + p g„(U/2)Mz + AS. The first

two terms are the mean 6eld action for a ferromagnet
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quency around the minimum is up [pp(hp) /a ]~a~
and the width of the barrier is given by Qp = g3/2+eA,
where h, = H, /(AS/a3) is the ratio of the coercive
field to the magnetic moment per unit volume (pp is
the magnetic permeability of free space and p is the
gyromagnetic ratio). The actual value of attempt fre-

quency is up 5~h, cz (K) for the choice of a =
A, and in the present case, this is roughly the same
as the crossover temperature T from the thermal ac-
tivation to the quantum tunneling. The classical solu-

tion (bounce) of Q in the metastable potential V(Q)
is given by Q(r) = Qp/cosh (upr/2), and the tunnel-

ing rate out of the local minimum is estimated by the
use of this bounce solution. For the case of the wall

with the cross sectional area Nas/A, the rate I'p with-
out dissipation is reduced to I'p ——Aexp( —B) where

p ~ [~ (h~)2/a3]N1/2h / &7/s ~ 1011N1/2h / &7/s (Hz)

and the exponent B is given as B Nh, P/4 [5]. Since
B is proportional to N~s/4 [17], a small value of ~ is
needed to observe the tunneling (see dashed lines in Fig.
2).

Let us now look into the nonlocal action ESg;„where
the characteristic feature of the itinerant electron system
is to be seen. For the case of a weak dissipation, this
contribution is evaluated by use of the configuration of a
domain wall obtained in the absence of dissipation. Up
to 7', b,Sq;, is obtained as

~s...=,', fs.fs'-') .'- ~.—.'~-'). ) q,
'

g q

x I4(r) —8g(r') I'(Jj.(q)J' (-q)) I

e "' im(J+(q) J-*(-q))l-+*p.
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which determines the magnetization M. The dynamics
of (8, P) is described by h,S, which is expressed in terms
of correlation functions of electrons. This term is de-

composed into two parts, that is, local and nonlocal in

time, respectively, as BS —= ES~, + AS~;, . The local

part LS~, determines the dynamics of the magnetiza-
tion vector, and the nonlocal part AS~;, represents the
dissipative effect due to conduction electrons on the mo-

tion of the magnetization vector.

Up to the lowest order in 8 and 9, the local part
6Sl„ turns out to be formally the same as the ferromag-
netic Heisenberg model [13,14] with spin S—:M/2 whose

Lagrangian is given by
/. S .

dxI i—P(1 —cos8)a3

JS2
+ (V8) + sin 8(VQ) I. (3)

The exchange coupling or the spin wave stiffness con-
stant is expressed by the parameters of the origi-
nal Hubbard model as J —= (n/ma3M2)(1 —[(kFs&

—kF&)a ]/307r mnUM), where n is the electron number

per site, kF~ = [2m(~F +crUM)] / is the Fermi momen-

tum, and a is the lattice constant. Hence, in the absence
of the nonlocal term 6Sg;„ there is no formal difference
between metallic and insulating ferromagnets, and the
tunneling rate of the domain wall is determined on the
same footing [5].

In order to incorporate the domain wall, the anisotropy
energy with the y-z easy plane is introduced [15],

H„;= dxI ——S cos 8+ S sin 8cos PI. (4)
/' K, , K. . (5)

The Lagrangian LH+H~„; has a planar domain wall cen- where J (q) (n = 6, z) are the Fourier transform of

tered at x = Q(r) and moving slowly as a classical so- the spin currents of the electron; J—:—i[(ato Va)—
lution; cos8(x, r) = tanh[2: —Q(r)/A] and cosp(x, r) (erato a)] with ay = o bio„, and 8~—:p„e '1'"8„.
iQ/c « 1 with c—:K~ASas where A

—= gJ/K is the V is the system volume. The dissipation does not result

width of the wall. from the z component J, in the present case of a domain

For the magnetic field H close to the coercive field wall motion with 7'P = 0. The expectation value of elec-

H, [16], i.e., (H, —H)/H, = e « 1, the potential for tron spin current (J~J ) in AS~;, is evaluated by the

the wall coordinate Q is approximated [1,5] by V(Q) —= random phase approximation (RPA) in the background

(1/2)M~up2Q2[1 —(Q/Qp)] where M~ = 2N/K~A2as is of uniform magnetization.
the domain wall mass, N being the number of the spins After the analytic continuation to real frequency, ASd;,
in the wall. For this case of small s, the attempt fre- is expressed by the imaginary part of the retarded corre-

lation function (J+J ) I +;p as [18]

b,Sd;, = dr dr' —) q I8q(r) —8q(r') I (6)
4m 2 V pq

The imaginary part is expanded in terms of ~/eF as

fA G (kFy —JCFg) 3
I (J*( )J*(- ))I = ~

~
~, +o(~ ), kFT —kFi & Iql &kFT+kF$, (7)

0, otherwise.

The term linear in cu gives rise to the Ohmic dissipation. It is seen from the restriction on q that the Ohmic dissipation
arises from the Stoner excitation, which is a gapless excitation of spin flip across the Fermi energy.

By use of the domain wall solution of 8, the nonlocal part of the effective action is reduced to

(kF7 —kFi) a 1, 1 " &+" & dq q 1
ASd;, = N dr dr', —sin —[Q(r) —Q(r')] —3 2 . (8)4 Aa q cosh —Aq
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Because of the form factor of the wall, 1/ cosh (vrAq/2),
the momentum integration is dominated by q & A

The time integral is estimated by approximating the
bounce solution as Q(7) Qpe(up —}~})and by in-

troducing a short time cutoE of uo for the relative time
(v —r') [19]. Noting qQp oc qA+e « 1, the sine function
in Eq. (8) can be replaced by its argument and the action
is evaluated to be ESd;, —= rINe where the factor e is due
to the smallness of the squared tunnel distance Qzp. Here
the strength of dissipation, rI, is

813. . . ,A I" +")"
(kit. —kit)za4 — dx-

&cosh 2:

(9)

For a thick wall A(kF1 —kFI) )) 1, as is realized in most
conventional bulk metals, q oc exp[—vrA(kFI —kFI)] and
then the dissipation is negligible. On the other hand,
rI can be large if (kFI —kF1)A & 1. This condition is
compatible with that of slow spatial variation AkFI 1
for a wall with moderate thickness in a weak ferromag-
net and for a thin wall in a stronger ferromagnet. The
strength rI is plotted as a function of (A/a) in Fig. 1

for three different values of 6 = (kFI —kFI)/(kFI + kFI)
with (kFI + kFI)a = 6 which may represent the case of
an iron. The dissipation is larger for weaker magnets
(smaller 6). (For a complete ferromagnet, kFI vanishes
and the Ohmic dissipation disappears. ) It is seen that rI

can be of the order 0.1 for a wall with thickness a few

times the lattice spacing with 6 & 0.1.
In the presence of dissipation, the tunneling rate is

reduced to be I' = A exp[—(B+b,Sd;, )] = I'p exp( qNe)—
Because of the different e dependence of B and ESg;„
the ratio bSd;, /B = qh, e / is much larger than
unity for the case of small e we are interested in, and
in particular for a thin wall (h, is usually small, e.g. ,

10 ). Consequently the tunneling rate is predominantly
determined by dissipation in such cases. The tunneling
rate I' is shown in Fig. 2 for the case of insulator (ri = 0)
and the typical case of a metal (ri = 0.1) by the broken
and solid lines, respectively, for a choice of h, = 10 4.

In this figure, the number of spins is taken to be either
N = 10 or 10 . The value N = 10 corresponds, for

instance, to a wall with thickness of about 10 A and the
area of 200 AX200 A.. The tunneling rate is seen to be
much smaller in metals than in insulators.

We have neglected the eKect of magnetic field on elec-
tronic states. This is justified as long as UM )) pH. In
experimental situations with the magnetic field of 1
T and U = 10 eV, this condition reduces to M ) 10
in units of the Bohr magneton, which is easy to satisfy.
However, in order to discuss the case of very small M,
the fluctuation of the magnitude M„around the mean
field value must also be included.

In Eq. (9) we have taken account of only the Ohmic
dissipation. The super-Ohmic contributions, which are
of higher orders of a/eF in Eq. (7), are smaller than
the Ohmic one by a factor of (~p/eF) && 1 and
hence are negligible. On the other hand, a contribu-
tion from the magnon pole leads to super-Ohmic dissi-

pation, whose strength, g(i'"'), is evaluated as q'(i'"& =
(28/5) M(b, p/~p) exp( —6p/top). Since experiments are
usually carried out in highly anisotropic materials with

Ap/~p 10, this contribution is very small compared to
the Ohmic dissipation for the case of a thin wall.

Besides the direct coupling to the electron spin current,
the moving wall in metals also interacts with the charge
current by inducing the electric field by Faraday's law as
noted by Chudnovsky et al. [11].The effect of dissipation
due to this coupling is expressed in terms of the charge
current correlation function of the electron similarly to
Eq. (5), and the Ohmic dissipation exists at T = 0. To
estimate this effect, we note that the induced electric field

is E„(x)= pppSQ/as for }x—Q} & L, L being the linear
dimension of the cross section of the wall (Aw = L~), and

E„(x) 0 for }x—Q} )) L. For the disordered case with
I )) E, where E is the mean free path of the electron, the
strength of Ohmic dissipation ri('h), which turns out to
be proportional to the conductivity u, is obtain& as

S2
(ch) (+P y )

AL (10)6
For the case of a typical metal, o = 10s[A im '], it is

evaluated as q('h& = 10 "(A/a)(L/a). Hence dissipation
due to the charge current would be small for the case of
a domain wall with mesoscopic size, which is the case we

are interested in; L/a & 104.
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FIG. 1. Strength of Ohmic dissipation q given by Eq. (9) as
a function of the width of the wall A/a, a being a lattice con-

stant, for three choices of 6:—(kFr —kF&)/(kFi +kFi): 0,05,
0.1, and 0.2 with (kFi + kFi)a = 6.0.
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FIG. 2. The tunneling rate I' for the insulating (g = 0)
(dashed line) and the metallic (g = 0.1) (solid line) magnet

as a function of e, H, being the coercive 6eld. Number of
spins is N = 10 and 19 .
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Our result shows a distinct difFerence between MQT
of thin walls in metallic and insulating magnets. Unfor-
tunately the experiments carried out so far appear not
yet able to observe dissipation due to itinerant electrons.
The experimental result on small ferromagnetic particles
of Tbp sCep sFe2 suggests the motion of a domain wall
via MQT below T, 0.6 K [6]. In this experiment, the
width of the domain wall is about 30 A. and according to
our result, rl oc exp[ —7rA(kFT —kF1)], the dissipation from
electron spin current is negligible for such a thick wall.
This may be the reason why the result of the crossover
temperature T„0.6 K is roughly in agreement with the
theory [5] without dissipation. On the other hand, the
domain wall in SmCos is very thin, A 12 A, and our re-
sult suggests the strong effect of dissipation due to Stoner
excitation, which will be interesting to observe. Exper-
iments on bulk crystal of SmCo35CUi. s with very thin
walls (a few times a) have been performed [20], although
quantitative argument is not easy since many walls par-
ticipate in these experiments. Even in the case of thick
walls, the dissipative efFect becomes large in weak fer-
romagnets, where the experiments, however, will not be
easy because of the small value of the saturation mag-
netization M. In actual comparison with experiment,
the existence of multibands (as in the s-d model) may
be important, to which case our calculations are easily
extended.

MQT in disordered magnets has a new possiblity of
observing a significant effect of sub-Ohmic dissipation.
In fact, as disorder is increased in a metallic magnet, the
Anderson transition into an insulator will occur, and it
was shown recently that near the transition the dissipa-
tion due to the conduction electron becomes sub-Ohmic
[18]. Disordered magnets may also be suitable for study
of MQT because the effect of eddy currents becomes less
important for larger resistivity as seen in Eq. (10).

In conclusion, we have studied the macroscopic quan-
tum tunneling of a domain wall in a metallic ferromag-
net on the basis of the Hubbard model. The crucial dif-
ference from the case of an insulator is the presence of
Ohmic dissipation even at zero temperature due to the
gapless Stoner excitation. The coupling of the domain
wall to electron spin current is effective only for momen-
tum transfer of ]q] & A i, while Stoner excitation is gap-
less at the restricted region kFI —kF1 & ]q](& kFI+ kpg).
Hence the efFect is negligible for a thick domain wall in
which experiments have been carried out so far. On the
other hand, important effects of the Ohmic dissipation
are expected in thianer domain walls and in weak ferro-
magnets, which will be within the present experimental
attainability.
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