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Structural Stability and Renormalization Group for Propagating Fronts
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A solution to a given equation is structurally stable if it suAers only an infinitesimal change when the
equation (not the solution) is perturbed infinitesimally. We have found that structural stability can be
used as a velocity selection principle for propagating fronts. We give examples, using numerical and re-
normalization group methods.
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The steady state equation for a traveling wave propa-
gating into an unstable state does not always uniquely
determine the wave speed. Instead there may be multiple
stable steady state traveling wave solutions, even though
the physical system described by the equation exhibits
reproducibly observable behavior corresponding to only
one of these solutions [1-6]. In such a situation, it is
desirable to formulate a so-called selection principle,
which would allow one a priori to distinguish observable
from unobservable steady state front solutions without
having to solve directly the equation of motion starting
from the initial conditions.

For a certain class of equations, rigorous analysis
shows how a wide range of physically realizable initial
conditions evolve into the selected front, which turns out
to be the slowest stable solution allowed by the steady
state equation [7]. A physical, heuristic interpretation of
this result, known as the linear marginal stability hy-
pothesis, has been proposed and is believed to be applic-
able in the so-called pulled case, for which the selected
speed may be determined by the linear order terms alone
[8,9]. However, it is well known that there is another
case, the so-called pushed case, where analysis of the
linear order terms alone is not sufficient to determine the
speed, and the linear marginal stability hypothesis fails
[8,9].

The purpose of this Letter is threefold. First, we recall
the notion of structural stability the stabil—ity of a front
with respect to a perturbation of the governing equa-
tion —and argue that only structurally stable fronts are
observable. We next show that for structurally stable
fronts, a renormalization group (RG) method can be
used to compute the change in the front speed when the
governing equation is perturbed by a marginal operator.
Finally, by combining the structural stability principle
with RG, we are able to predict the selected front itself.
Our results apply to both the pulled and pushed cases.
Roughly speaking, structural stability is an insensitivity
to model modifications, whereas the RG may be inter-
preted as a method to extract the structurally stable be-
havior of a model [10,11]. Structural modifications of
traveling wave equations have been studied previously
(e.g., Zel'dovich's work on flame propagation [12])but to
our knowledge, structural stability has not previously

been proposed as a selection mechanism. RG methods
have been used to study the asymptotics of partial
differential equations (PDEs) [11,13] and propagating
fronts in the Ginzburg-Landau equation [14].

A good model of reproducibly observable physical phe-
nomena must give structurally stable predictions. That
is, the observable predictions provided by the model must
be stable against "physically small" modifications of the
system being modeled. We will quantify below the mean-
ing of the term physically small for a certain class of
reaction-diffusion systems. The idea of structural stabili-
ty used here is close to that proposed by Andronov and
Pontrjagin [15] for dynamical systems. In the modeling
of natural phenomena, we need not require, as did Andro-
nov and Pontrjagin, the structural stability of the entire
model, but only of the solutions corresponding to repro-
ducibly observable phenomena. We call these structural-
ly stable solutions Our str.uctural stability hypothesis
states that only structurally stable solutions of a model
represent reproducibly observable phenomena of the sys-
tem being modeled. This hypothesis is implicit in most
mathematical modeling, and indeed often redundant, yet
we will demonstrate that, for reaction-diffusion equations,
this hypothesis correctly singles out observable propaga-
ting fronts. The basic reason for its efficacy in the situa-
tions studied here is that the formulation of reaction-
diffusion models sometimes inadvertently includes an un-

physical feature, although the model is in some sense
close to a class of physically correct models.

Consider Fisher's equation [1] on the interval
+~goo
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where F is a continuous function with F(0) =F(1)=0.
We will usually be interested in boundary conditions
where y is zero at one boundary and unity at the other.
If F satisfies the condition F(ttt) & 0 for all ttt C (0, 1),
then there exists a stable traveling wave solution interpo-
lating between ttt= 1 and ttt =0 with propagation speed c
for each value of e greater than or equal to some
minimum value c*. The positivity condition on F stated
above together with differentiability of F at the origin will

henceforth be called the A W condition; when it is
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satisfied, c*~ c—=2vF'(0). Aronson and Weinberger [7]
proved that for (1) with the AW condition satisfied, the
selected solution is that with speed e . In most systems
studied by physicigts, the minimum wave speed satisfies
c*=c, which corresponds to the pulled case. Often, the
initial conditions decay sufficiently fast (faster than some
exponential function) to @=0 that the selected wave

speed is in fact c*. The pushed case is equivalent to the
statement c*&e. In this paper, we are concerned not
only with Fisher's equation subject to the AW condition,
but also with (systems of) reaction-diffusion (semilinear
parabolic) equations not satisfying the conditions re-
quired for Aronson and Weinberger's rigorous proof, but
which still exhibit the selection problem.

It is straightforward to show that all propagating solu-
tions of (1) are structurally stable against C'-small
perturbations bF of F. Unfortunately, reaction-diffusion
equations are not in general structurally stable with

respect to C -small perturbations. Consider (1) as
describing the propagation of fire along a fuse. F repre-
sents the net rate of heat production as a function of tem-
perature lit. The value lit 0 corresponds to the flash

point, and y 1 corresponds to the steady burning tem-
perature. It is reasonable that the observable properties
of such a front would be insensitive to most small changes
to F. However, by altering F very near y 0 with a C-
small perturbation, dF/dy in the neighborhood of y 0
can be made arbitrarily large. That is, the rate at which

heat production increases as a function of temperature at
or near the flash point can be made very large, and this
explosive low temperature behavior will travel very rapid-

ly along the fuse.
It is clear then that certain C -small perturbations are

not physically small. This is the case, however, only for
perturbations which increase supv c to „1[F(y)/y] appre-
ciably for some g & 0. We will call a C -small perturba-
tion for which the one-sided bound supv~o[hF(y)/y] is

less than some small positive number (which goes to zero
continuously as the C norm of BF vanishes) a p-small
perturbation [16]. The precise form of our structural sta-
bility hypothesis for (1) is as follows: Physically realiz-
able solutions are those which are stable with respect to
p-small structural perturbations. We believe that this hy-

pothesis is correct for other systems, but stress that p-
small perturbations for other systems may diff'er from the
ones given here.

The ordinary diff'erential equation (ODE) governing
the traveling wave front shape y(g) =y(x, t) can be
transformed into the equation

P &P
dU (2)
dq

'

with the identifications g—=x —ct t, y q, dy/dg
q=p, and F=dU/dq. This ODE describes the posi-

tion q of a unit mass particle subject to a potential U(q)
and friction. The coefficient of friction is c, the speed of
the traveling wave. Traveling wave solutions of (1) inter-

polating between the fixed points y=0 and ]I[1=1 corre-
spond in this particle analogy to trajectories which begin
at the maximum of U located at q =1, with zero kinetic

energy, and which terminate at the origin. Those trajec-
tories which correspond to stable solutions of the original
PDE are those for which q never changes sign.

If the origin is not an isolated local minimum of U,
there is only one value of the coefficient of friction which

allows the particle to stop here without overshooting. If
the origin is an isolated local minimum of the potential,
there is a critical value c* of the frictional coefficient.
For all smaller values, the particle overshoots the origin
at least once, while for a continuous set of larger values,
it converges to the origin as t without overshooting.
For both types of systems, we define c* to be the smallest
value (unique value in the former case) for which the

particle approaches the origin in the t ~ limit without

overshooting.
We have proven that c is continuously dependent on

the continuous function F [17-19]. Thus because we can
make the origin a local maximum of U with arbitrarily
small C perturbations (in fact, p-small perturbations),
and because c is the only value of c for which the parti-
cle stops at the origin (without overshooting) in this case,
the continuity of c implies that only this critical value is

structurally stable. Therefore, our structural stability hy-

pothesis asserts that c is the unique observable front
propagation speed of the original PDE.

For AW-type equations, it has been proven that c* is

indeed the selected speed. Our structural stability hy-

pothesis is thus rigorously correct in this case. For non-

AW-type equations, however, there is no proof that this
minimum value is selected. We have therefore performed
numerical studies to test our conclusions for non-AW
equations as well as for systems of coupled reaction-
diffusion equations [17,18]. An example is the equation
studied by van Saarloos [20]:

8y 8'1' a4y'+~(b+&)(I ~),ex' ex4

where y & —,', . For 0 & b & —,', the front is pushed,
whereas for 2 &b & 1 the front is pulled. We replaced
the potential term by 8(y —d)(y —h)(l —y)(y+b)//b,
where 8 is the step function, and solved the steady state
equation numerically for a sequence of potentials where

0+. For both pulled and pushed cases, the unique
selected velocity converged to that dynamically selected.

We now proceed to show how RG can be used to com-
pute the change in the front speed when an equation,
whose structurally stable exact solution is known, is per-
turbed by a p-small operator. Introducing new variables
X—=e" and T=-e', the propagating front solution becomes
a similarity solution y(x ct) @(XT ') an—d c may be
interpreted as an anomalous dimension [11,13,14]. The
preceding arguments imply that for structurally stable
fronts p-small C perturbations are marginal, but general
C perturbations are relevant.
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Let yp(x —cpt+xp) be a stable traveling front solution of (1) with speed cp and constant of integration xp. Let us

add a p-small structural perturbation BF to (1), where its sup-norm ~~BF([ is of order e, a small positive number [21],
and assume that in response the front solution is modified to yp+by. Defining gp—=x cp—r+xp and linearizing (1) with

respect to e in the moving frame with velocity co, we formalIy obtain the following naive perturbation result:

r +oo
By(gp, i) =e ', dr'„d('G((p, t;g', r')e" BF(yp((')) . (4)

Here tp is a certain time before BF(yp((p)) becomes

nonzero, and G is the Green's function satisfying By- —(r —r p) Bcyp(&) + (By), ,

—XG B(t —r ')B(g —g')
8r

with G 0 in ((—g'~ ~, where

=a' co
+F'(yp(g) )—

gg2 4

Formally, G reads

J+('dge'~-yp(&)BF(yp(g) )
6c = —lim—

I ao I+Idge 04y&2(()

(6) This formula is easily justified if 0 is isolated from the
essential spectrum of X. In the pulled case this condition
is not satisfied [5,22], but a more detailed argument
shows that (9) remains valid [23].

One might immediately guess that bc is the O(c)
change in the front speed, but the naive perturbation
theory is not controlled, due to the secular divergence as

rp
—~. This divergence can be controlled by pertur-

batively renormalizing the constant of integration: xo
=xi''+Z, where xp is the finite observable counterpart of
xp, the renormalization constant Z =+Pa„(rp,p)e", and

the coefficients a„are chosen order by order in e to elimi-

nate the secular divergence. The quantity p parametrizes
the family of solutions to the unperturbed equation; it

corresponds to the arbitrary renormalization point in the
Gell-Mann-Low RG [24].

To order e the solution y is given by

G(&, r;&', r') -up(&)up (&')+pe '"" "u„(&)u.*(&'),

(7)

where Sup 0, and Xu„k„u„. The summation symbol,
which may imply appropriate integration, is over the

spectrum other than the point spectrum [0]. Because the

system is translationally symmetric, upcee' yp(g). Be-
cause of the known stability of the propagating wave

front, the operator X is dissipative, so 0 is the least upper
bound of its spectrum. Hence, only up contributes to the
secular term (the term proportional to t —tp) in By.
Thus we can write

(5) where (By), is the bounded piece (regular part), and

y(x, l) =yp(gp) Bc(r rp)yp(gp)+(By)i+0(8 )

=yp(&) + ea ~ yp(&) Bc(r rp—)yp(&)+ (—by), +O(e'),

(10)

~here (—=x —cpr+xf(p) Thus we .can choose ea~ =(p
—rp)Bc to eliminate the divergence to O(e). Requiring
that y be independent of p gives the RG equation

a ay+Bc y-O(e').
ar ag

(12)

Thus the speed of the renormalized wave is indeed cp
+Bc. The formula (9) can also be obtained from the sol-
vability condition for the first order correction By, and is

an example of a very general relation between renormal-
izability and solvability [23]. Furthermore, (12) corre-
sponds to the amplitude equation describing the slow
motion. This relation is also quite general [23].

As an illustration of the use of the renormalized per-
turbation theory consider the following examples. The
first, a pulled case example, is Eq. (1) with the nonlinear
operator F y(1 —y) and the perturbation BF-ey(1
—y). In this trivial case, the exact result is, of course,
c 2v I+a', whereas (9) gives c*=2+e. A more in-

teresting pushed case example is provided by Eq. (3) with

b 6 (0, 2 ). When y=O, we have c (0) =v'2b+I/v2b.

For nonzero y, (9) gives c*(y) c*(0)—pc*(0)3s4&2s

+1)/10 with s=—2c'(0)/[c*(0)+Jc*(0)'—4]. This

agrees we11 with numerical calculations. For example,
this result gives c (0.08)=2.696 for b=0. 1, while the

corresponding value determined numerically [20] is

2.715.
The perturbation theory result (9) can also be used to

calculate heuristically the selected speed of the unper-

turbed system, using the structural stability idea. Within

perturbation theory, a necessary and suScient condition

that c* be the selected speed is that Bc(c*)be bounded.

For example, when F y(1 —y), the change in the veloc-

ity Bc(c) is zero as ~ljBF)l)l 0 for all perturbations BF,
which are both p small and diN'erentiable at the origin,

only if c =c*=2; for c & c* there exist such perturba-
tions for which Bc does not vanish. A simple example of
the latter is the perturbation BF 8(u —b )(u —d ) (1
—u) —u(1 —u), as W—0+.

What is the physical signi6cance of structural stabili-
ty'? Returning to the fuse analogy introduced above, we
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can imagine the fuse to be covered with a very thin film
of water which quickly evaporates when heated to a tern-
perature slightly above lit =0; nevertheless, the film

suppresses tip ignition. Thus even a small perturbation
can destroy (or drastically alter) the tip of a propagating
front. For this reason, any front ~hose behavior is deter-
mined by its tip can be destroyed by such a perturbation.
If and only if a front's behavior is independent of the de-
tails of its tip can it survive such a perturbation and be
structurally stable; hence, a front with c&e is not
structurally stable, because no deviation is permitted
from the required decay ahead of the front. On the other
hand, the front with c =c* is insensitive to its tip, as we
can see from our explicitly dynamical RG calculation.
There, the leading edge is determined by the initial condi-
tions, is not universal, and vanishes as t ~. Neverthe-
less, for sufficiently rapid leading edge decay in space, the
asymptotic speed is c: Thus c is independent of the
details of the leading edge, so that the front is structural-
ly stable [17,18]. In future work, we hope to address the
question of selection for pattern-forming fronts.
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