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Double-layer quantum Hall systems have interesting properties associated with interlayer cor-
relations. At v = 1/m where m is an odd integer they exhibit spontaneous symmetry breaking
equivalent to that of spin 1/2 easy-plane ferromagnets, with the layer degree of freedom playing the
role of spin. We explore the rich variety of quantum and finite temperature phase transitions in
these systems. In particular, we show that a magnetic field oriented parallel to the layers induces a
highly collective commensurate-incommensurate phase transition in the magnetic order.

PACS numbers: 75.10.—b, 64.6G.Cn, 73.20.Dx, 73.40.Hm

Recent technological progress has allowed production
of double-layer quantum Hall systems of extremely high
mobility. The separation d of the two 2D electron gases is
so small (d 100 A.) as to be comparable to the spacing
between electrons in the same layer and quantum states
with strong correlations between the layers have been ob-
served experimentally and discussed theoretically [1—3].
Wen and Zee have pointed out that at Landau level filling
factor v = 1/rn and in the absence of interlayer tunneling,
this system exhibits a spontaneously broken U(l) sym-
metry [4,5]. (rn is an odd integer. ) The corresponding
Goldstone mode is a neutral density wave in which the
densities in the two layers oscillate out of phase. A finite
temperature Kosterlitz-Thouless (KT) phase transition
is expected to be associated with this broken symmetry.

In this paper we focus for convenience on the case
v = 1 and show that this system can be viewed as
an easy plane quantum-itinerant ferromagnet. Following
Ref. [6] (but with a rotated coordinate system) we will

use an "isospin" magnetic language in which isospin "up"
("down") refers to an electron in the "upper" ("lower" )
layer [7]. Using this language and building upon recent
progress in understanding the case of single-layer systems
at v = 1 with real spin [8,9) we explore the consequences
of the mixing of charge and isospin degrees of freedom
and discuss the rich variety of phase transitions con-
trolled by temperature, layer separation, tunneling be-
tween layers, layer charge imbalance, and magnetic field
tilt angles. In addition to the KT transition we find a
"commensurate-incommensurate" phase transition as a
function of B~~, the component of the magnetic field in
the plane. Furthermore, we demonstrate that the Meiss-
ner screening of the in-plane component of the magnetic
field (B~~) predicted by Ezawa and Iwazaki does not oc-
cur. A portion of this rich set of phenomena is captured
in the schematic zero-temperature phase diagram illus-
trated in Fig. 1. The present paper will be devoted to
explication of the physical picture underlying this phase

diagram. Technical details of the microscopic calcula-
tions on which it is based will be presented elsewhere

[10].
It is helpful to begin by discussing the limit of zero-

temperature, zero-tunneling amplitude between the lay-
ers and layer spacing d = 0. We work entirely in the
lowest Landau level and take the unit of length to be
l = (hc/eB) / Coul.omb repulsion induces a strong ex-
change interaction Ez ~ (60 K) y B, where B is in T,
which seeks to ferromagnetically align all the isospins.
Because the kinetic energy has been quenched by the
Landau level degeneracy, the exact ground state is simply
a single Slater determinant consisting of a filled Landau
level with all electrons fully polarized in the same isospin
state. Since in this special limit the interactions do not

FIG. 1. Schematic zero-temperature phase diagram (with
d/I. increasing downwards). The lower surface is d' below
which d ) d and the interlayer correlations are too weak
to support a fermionic gap, Ap. The upper surface gives
B

]
the commensurate-incommensurate phase boundary. As

d approaches d, quantum Auctuations soften the spin stiff-
ness and therefore increase B]I.
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depend on which layer the particles are in, the system
exhibits full SU(2) invariance [H, S"]= 0 and the direc-
tion of the polarization is arbitrary. The total isospin for
N electrons is S = N/2 and the 2S+ 1 eigenstates of
S*—:(Ny —Nt)/2 are completely degenerate.

The exact single-magnon excited states can also be
found [6,11]. Taking the magnon vacuum to be the
S' = N/—2 ground state, we have

[k) = S~+ i0),

where S& is the Fourier transform of the isospin rais-
ing operator and the overbar indicates projection onto
the lowest Landau level. In the single-magnon subspace
there is only one state for each wave vector so that ~k) is
an exact eigenstate. The eigenvalue ei, vanishes quadrat-
ically at small wave vectors and saturates at E at large
wave vectors. The quadratic dispersion at small k implies
an efFective isospin stifFness energy for variations in the
unit-vector order parameter field m" (r) = (4+8 )(S"(r))

(2)

with p, = e /16'/2xeE. The microscopic origin of this
stiffness is the loss of exchange energy when the spin
orientation varies with position [9,10].

These properties of the ground state and small wave
vector excited states are similar to those of the 2D quan-
tum ferromagnetic Heisenberg model. However, this
system is most comparable to itinerant electron ferro-
magnets and this has some especially interesting conse-
quences [9,10]. In particular at v = 1 charged excitations
can only be created by distorting the isospin orientation
and, quite remarkably, the fermionic charge density is
simply the Pontryagin topological density [9,10]

proximation, the primary eEect of U, is simply to lift
the degeneracy of the Heisenberg ground states, prefer-
entially selecting states with magnetization lying in the
XY plane in order to minimize the charging energy. The
system still has U(1) invariance for rotation about the z
isospin axis; i.e., the number of electrons in each layer
is a good quantum number. The collective mode spec-
trum is still gapless but the dispersion is now that of a
linear Goldstone mode [4—6,12]. In the regime of sponta-
neously broken U(1) symmetry we expect, as discussed
below, a finite gap for charged excitations and hence a
discontinuity 6p in chemical potential vs filling factor
which implies a dissipationless quantum Hall state.

If the spacing d exceeds a critical value d' (Fig. 1) the
system is unable to support a state with strong inter-
layer correlations and the spontaneous U(1) symmetry
breaking is destroyed by quantum fluctuations [6]. At
this same point we expect the quantum Hall effect to
be destroyed as the fermionic gap 6p, collapses. In the
Hartree-Fock approximation [13] there is a continuous
phase transition with a gap collapse occurring at finite
wave vector so that the ground state becomes a charge-
density wave (CDW). Numerical exact diagonalization
calculations suggest that there is no CDW state but the
transition is continuous [10]. Little else about this tran-
sition is firmly established at present. The most naive
picture that the transition is in the universality class of
the (2+ 1)D XY model may be incorrect because of the
nearby gapless fermionic degrees of freedom and the fact
that (see below) vortices carry fermionic charge.

The XY symmetry and finite stifFness in the regime
0 ( d ( d' imply a finite temperature KT transition.
The local XY spin orientation can be described by a
single angle variable 8(r) and the efFective Hamiltonian
1S

(3)

I( I ) /~2 t *~ NP (4)

where g(d/l) is an exchange correction [6]. This acts as
an "easy-plane" anisotropy converting the system from
Heisenberg to XY symmetry. For 6nite U„S is no
longer a good quantum number. However, to a 6rst ap-

Thus even though the isospin spectrum is gapless, the
isospin stiffness implies a finite charge gap, the lowest
energy state carrying charge being a "skyrmion" spin tex-
ture [9,10] whose energy is one-half of the Hartree-Fock
charge excitation energy [in the SU(2) invariant case].

There are several ways in which the SU(2) symmetry
can be lifted. The most important consequence of Qnite
layer separation d is the creation of a local capacitive
charging energy which for slowly varying charge density
(m') is [4—6]

where, in the Hartree-Fock approximation p,
(e /16m') 1'a dx x exp( x2/2 —dx—/E) The KT c. ritical

temperature (within the Villain approximation) is [10]
TKT = (m/2) p, 0.5 K for typical sample parameters
of Murphy et aL [3]. A more detailed estimate will re-

quire knowledge of quantum fluctuation corrections to
the stifFness and knowledge of the vortex fugacity (core
energy) which will be modified by the fact that the vor-
tices carry electron charge +e/2. The vortex charge is
readily deduced by noting that an electron circling the
vortex feels a Berry's phase of exp (ix) = —1 induced by
the 2~ rotation of its isospin. Thus it sees the vortex as
half a fiux quantum which for o „=ve~/h induces charge
kv/2 = +1/2 [14]. One can also see this by noting [10]
that each vortex is one of four flavors of "meron" (half a
Skyrmion) with + vorticity at infinity and a large diam-
eter core (if d/E is small) in which the isospins smoothly
rotate either up or down out of the XY plane. The de-
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feet has half the topological charge and hence half the
ferrnionic charge of a Skyrmion.

Normally the KT transition would be visible only
in the channel which supports "isospin supercurrents, "
namely, oppositeLy directed charge currents in each layer.
However, in the present case a uniform current flow in the
same direction in each layer produces a Hall field which
will couple to the vortex charge. Thus the KT transition
should also manifest itself as a sudden drop in dissipa-
tion in this channel for T & TKT. In contrast to the
usual case in superfluid and superconducting films, how-

ever, the linear dissipation will not drop to zero (in this
channel). This is because gapped nonvortex (i.e. , uncon-
fined) fermionic excitations will also couple to the Hall
field producing weak thermally activated dissipation.

Another way in which the symmetry can be modified
results from the fact that it is possible to unbalance the
charge density in the two layers by addition of a bias
field 8 from a gate. This corresponds to a perturbation
V, = eE'dS'. If the symmetry has already been low-

ered from SU(2) to U(1) by the finite d this perturbation
causes no dramatic changes. It is expected, however, to
renormalize the stiffness p, downwards. The most naive
picture of this is simply that when the isospins tilt up
in the z direction their projection onto the XY plane is

reduced Thus. we expect the v = 1 XY ordered state to
be robust in the presence of variations in NT —N1. This
is in sharp contrast to the situation at other filling fac-
tors such as v = 1/2 which is described by the Halperin
331 state [15] and which requires equal numbers of elec-
trons in each layer. This characteristic feature of the
v = 1 state appears to have been observed [3]. We note
that the reduction in p, will renormalize TKT downwards.
Near d', charge unbalance could be used to tune to the
quantum critical point without having to vary d —d*.

The final way that one can modify the isospin sym-

metry is through a finite tunneling amplitude t which
will destroy the XY symmetry by adding a term to the
Hamiltonian which selects out a preferred direction and
thereby induces an isospin excitation gap

HT = — d r h S(r), (6)

where h = 2t,'x. This perturbation attempts to maximize
(S*) since it prefers the particles to be in the symmetric
tunneling state. In the presence of tunneling, the system
always has a finite value for (8*) no matter how large d is

(or even how high the temperature). The fermionic gap
is stabilized by this efFect so that the critical spacing d'
is enhanced [6] in the presence of tunneling (see Fig. 1).
However, the fermionic gap collapse at the enhanced d*

is now no longer directly associated with the complete
loss of spontaneous XY' magnetic order.

The third axis in Fig. 1 is tilt of the magnetic field

achieved by adding a Beld BII in the plane of the lay-
ers. Tilting the field has traditionally been an excel-
lent method of distinguishing effects of (real) spins be-
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cause orbital motion is primarily sensitive to B~ while
the (real) spin Zeeman splitting is proportional to the
full magnitude of B. Thus parallel field can destabilize
spin singlet states in favor of ferromagnetic states. For
the case of the double-layer v = 1 systems studied by
Murphy et aL [3], the ground state is known to already
be an isotropic ferromagnetic state of the true stains and
the addition of a parallel Beld will only serve to further
stabilize it. Nevertheless, these systems are very sensi-
tive to B~~. The activation energy drops rapidly by up to
an order of magnitude with increasing BII. At BII ——BI*
there appears to be a phase transition to a new state anII
the activation gap is independent of further increases in

BII ~

The efFect of BII on the isospin system can be visual-
ized in two different pictures. We use a gauge in which

B~~ = '7x A~~ where A~~
= B~~(0, 0, x). In this gauge there

is no change in the basis orbitals in each layer but the
tunneling matrix element acquires a position-dependent
phase & ~ &e'~* where Q = 2vr/L~~ and L[[ = Oo/B~~d
is the length associated with one flux quantum 40 be-
tween the layers. This modifies the tunneling Hamilto-
nian to HT = —jd r h(r) S(r) where h(r) "tumbles":

h(r) = 2t(cos Qx, sin Qx, 0). The effective XY model
now becomes

H = d r —p, 8 — cos r — x , 7

which is precisely the Pokrovsky-Talapov (PT) model

[16] and has a very rich phase diagram. For small Q
and/or small p, the phase obeys 8(r) —Qx but as B~~ is
increased the local field tumbles too rapidly and a contin-
uous phase transition to an incommensurate state with
broken translation symmetry occurs. This is because at
large BII it costs too much exchange energy to remain
commensurate and the system rapidly gives up the tun-
neling energy in order to return to a uniform state 'V8 —0
which becomes independent of B~~. Using the parameters
of the samples of Murphy et aL. [3] we find (for d &( d*

within mean-field theory) a critical field for the transition

B~t
——B~(2E/hard)(2t/np, )

~z = 1.6 'T which is within a
factor of 2 of the observed value [3]. Note that the ob-

served value B' = 0.8 T corresponds in these samples
II

to a large value for I ~~. L~~~/E 20 indicating that the
transition is highly collective in nature. A second strong
indication of the collective nature of the excitation gap
is the collapse of the observed gap at temperatures much

smaller than the gap [3]. We therefore believe that this
scenario of a collective commensurate-incommensurate
transition explains the phase transition seen in the ex-

periments. Numerical exact-diagonalization calculations
on small systems confirm the existence of this phase tran-
sition and show that the fermionic excitation gap drops
to a much smaller value in the incommensurate phase

[10]
The PT model also undergoes a finite temperature KT
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phase transition for B~~ ) B'~ which restores the trans-
lation symmetry by means of dislocations in the domain
wall structure of the incommensurate phase [16). Thus
there are two separate KT transitions in this system, one
for t = 0, the other for t g 0 and B~~ ) B~~.

We now discuss the commensurate-incommensurate
phase transition from the microscopic point of view. At
d = 0 the B~~ = 0 Landau-gauge many-body ground state
wave function is a single Slater determinent in which
the single-body states are the symmetric linear combi-
nation of two single-layer states with the same guiding
center. Phase coherence is established by tunneling be-
tween single-layer states with the same guiding center.
For many purposes this state is still a good approxima-
tion to the ground state at finite d since it optimizes
the tunneling energy and has good correlation energy;
an electron in one layer automatically sees an exchange-
correlation hole in the other layer at the same place. (It
would remain the exact ground state in the absence of
interactions. ) From a microscopic point of view it is the
good interlayer correlations of states with phase coher-
ence which leads to the broken symmetry in the absence
of tunneling. In the Landau gauge, a parallel field causes
tunneling to couple states in the two layers whose mo-
menta differ by q and whose guiding centers therefore
differ by PQ. Thus, for noninteracting electrons the ex-
act ground state in a parallel field is one in which the
exchange-correlation hole is not directly opposite its elec-
tron but rather shifts away by Pqx as the B field tilts (so
that a field line passing through the electron also passes
through the hole). This state maintains all of its tun-
neling energy but rapidly loses correlation energy as the
field tilts. At large tilt it is better to give up on the tun-
neling by shifting the two layers relative to each other to
put the correlation hole back next to its electron. This
shift can be shown to be the change from commensurate
to incommensurate [10] states disussed above.

Ezawa and Iwazaki [17] have recently proposed that
there is a Meissner effect which can screen out the applied

B~~ within a finite "Josephson screening length. " We find,
however, that this is incorrect. Consider the analog of
Eq. (7) for a spatially varying B~~(x),

H= r —p, 8 — cos Hr — x
2

' 2~8~

1 1 ~2m'd~
t(Aq) = —p, q ]Aq] = —p, B)(,2 2 (Op)

(9)

(8)

where 8~A(x) = (27rd/Op)B~~(x). Taking a weak slowly
varying field A(x) = A~ cos qx and making the harmonic
approximation, one readily finds that the variationally
optimal 8(x) gives an energy density

indicating that the system is an ordinary diamagnet with
vanishing Meissner kernel. The physical reason for this is
simply that it is very inexpensive at long wavelengths for
the phase to twist. Thus in the "commensurate phase"
the gauge invariant phase difference across the junction
(and hence the screening currents) nearly vanish.
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