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We study the time evolution of wave packets of noninteracting electrons in a two-dimensional
disordered system in strong magnetic field. For wave packets built from states near the metal-
insulator transition in the center of the lowest Landau band we find that the return probability to
the origin p(t) decays algebraically, p(t) ~ t~22/2, with a nonconventional exponent D3/2. D; is
the generalized dimension describing the scaling of the second moment of the wave function. We
show that the corresponding spectral measure is multifractal and that the exponent D2/2 equals
the generalized dimension D; of the spectral measure.

PACS numbers: 71.50.+t, 71.30.+h, 71.55.Jv, 73.40.Hm

Wave functions of critical states at a mobility edge
separating extended from localized states can be ana-
lyzed as multifractals [1-4]. This also holds for quantum
Hall systems, where the energy range of the extended
states shrinks to a singular point in the center of the
Landau bands [5-7]. These critical states exhibit a uni-
versal multifractal behavior that can be described by an
infinite set of generalized dimensions D, or equivalently
by a singularity strength distribution f(a) [8-10]. As a
consequence of the multifractality of the wave functions,
the two-particle spectral function S(k,w) in the quantum
Hall system shows nonconventional behavior [11,12]. At
large values of k?/w the diffusion constant as a function
of wave vector k and frequency w is reduced from its
conventional value Dy, D(k?/w) ~ Dy (k?/w)~"/2, with
7 = 0.3840.04 [12]. The exponent 7 is related to the gen-
eralized dimension D, of the wave function by n = 2— D,
[8,13]. The reduction in the diffusion constant will influ-
ence the long-time behavior of autocorrelations of wave
packets built from states close to the critical energy.

Another class of systems with multifractal wave func-
tion are quasiperiodic systems like the self-dual Harper’s
equation [14,15]. In contrast to the Anderson transition
where the density of states is smooth these systems have
multifractal spectra. For quantum systems with Cantor
spectra it was found that the temporal autocorrelation
function C(t) of wave packets built from the multifractal
eigenstates exhibits a slow algebraic decay, C(t) ~ t—¢
[16]. Ketzmerick et al. showed that § equals the general-
ized dimension D, of the spectral measure introduced by
the local density of states that form the weights in the
wave packets.

In this paper we establish a connection between the
multifractal properties of the wave functions and the
spectral measure for wave packets built from states near
the critical energy in the center of the lowest Landau
band, namely, that the generalized dimensions D5 of the

wave function and D, of the spectrum are related by
Dy = Dy /2. In order to obtain this result we study nu-
merically the time evolution of the wave packets for finite
systems. We find that the temporal autocorrelation func-
tion of these wave packets shows a slow algebraic decay
C(t) ~ t=%, with § = 0.81£0.02. Conventional, diffusive
behavior would result in § = d/2 = 1, with d = 2 the
Euclidean dimension of the space. We then show ana-
lytically that the multifractal structure of the wave func-
tions leads to the novel form 6§ = 1 —7n/2 = D;/2. By
numerically calculating the generalized dimension Dy of
the spectral measure we show that, even in the presence
of disorder where the global density of states becomes
smooth, the spectral measure introduced by the local
density of states near the critical energy is multifractal
and that as for Cantor spectra § = D,. This allows us to
connect the generalized dimensions of the wave function
and the spectral measure with the equality Dy = D5 /2.

The model that we use for the quantum Hall system is
a two-dimensional tight-binding model on a square lattice
with on-site disorder and transfer to nearest neighbors
only

H= Zemc;fncm + Z VinnClhiCn- (1)
m

m#n

The effect of the magnetic field is incorporated by a
Peierls substitution [17] via the vector potential A(r) in
the hopping matrix elements

Vinn = Vexp (—(ie/h) /: dr A(r)) . (2)

We used a system size of 125 by 125 lattice sites with
periodic boundary conditions and a commensurate mag-
netic field of 1/5 flux quanta per unit cell of the lattice.
This corresponds to a ratio of system size to magnetic
length L/I. of about 140. The disorder potentials {e,}

0031-9007/94/72(5)/713(4)$06.00 713
© 1994 The American Physical Society



VOLUME 72, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1994

were taken from a constant distribution of independent
random variables with —W/2 < ¢,,, < W/2. The strength
of the disorder (W = 3V') was weak enough so that the
tight-binding band split into well separated Landau sub-
bands.

In order to observe the multifractal properties of the
integer quantum Hall transition the system has to be ef-
fectively at the critical point in the center of the Landau
band. Approaching the critical energy E. in the center of
the Landau band the localization length £(E) diverges.
In a finite system the transition is rounded and the sys-
tem is effectively critical when the localization length
&(E) of the states under consideration is large compared
to the system size L. Over the energy interval used in
our calculation the localization length exceeds the system
size by at least a factor of 2 [5,6]. Within this critical re-
gion no systematic energy dependence of the generalized
dimensions was observed.

We used 330 states (about 10% of a Landau band) near
the center of the lowest Landau level to build the wave
packets. We construct normalized wave packets 1(r,t)
from the eigenstates ¢;(r) with energy E; so that at time
t = 0 they are centered around r = 0,

Y(r,t) = A"V/2 Z¢:(0)¢,~(r)e*E“’ h (3)

with A = 3, |¢:(0)|2. The probability density p(t) to
find the particle at site r = 0 at time ¢ is then given by

p(t) = [9(0, 1) = A7 3T 19:(0)]15(0) e F =N

i.j
(4)

This quantity can also be interpreted (up to a constant)
as the probability to find the wave packet ¥(r,t) =
(r|(t)) at time t in the initial state [(0)), p'(t) =
A~1p(t) = |(¥(t = 0)|¥(¢))|2. A temporal autocorre-
lation function C(t) was defined by Ketzmerick et al. by
smoothing p’(t) [16]:

C(t) = % /0 dt' pl(¢'). (5)

As can be seen from Fig. 1 C(t) decays algebraically,
C(t) ~ t~%, with § = 0.81 + 0.02. Conventional diffusion
would lead to a wave packet with asymptotically Gaus-
sian shape and a probability p’(t) ~ t~%/2, where d is the
Euclidean dimension of the space. The initial deviations
from the power law decay seen in Fig. 1 are due to the
intrinsic width of the wave packet at ¢t = 0, whereas the
behavior at times t > 8000 arises from finite size effects.

The slow decay of the temporal autocorrelation func-
tion is a result of the multifractal structure of the wave
functions and is related to the structure of the two-
particle spectral function S(k,w) [12],
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FIG. 1. Temporal autocorrelation function C(t) vs time
t (in units of k/V’) showing the nonconventional power law
behavior C(t) ~ t~% with § = 0.81 &+ 0.02. For comparison
the dashed line shows the conventional behavior C(t) ~ t™'.

A k2D(k*/w)
7 w2 + R2k4[D(k? /w)]?’

S(kvw) = p(Ec) (6)

In the limit k,w going to zero and k2 /w large compared to
the density of states at the critical energy p(E.), S(k,w)
is proportional to w="/2k=2+7 [12]. The exponent 7 is
related to the generalized dimension D, of the wave func-
tion by n = 2 — D3 [8]. Fourier transforming the spectral
function and taking the limit r — 0 gives the probability
density p(t),

1 oo it 1/lm
t) = —/ dw e*” /
2(t) P(Ee) J-oo 1/L

where the momentum integral is cut off at small wave-
lengths by the microscopic length [l,, (i.e., magnetic
length or lattice spacing) and at long wavelengths by the
system size L. The long time limit of Eq. (7) is governed
by the small frequency behavior of the momentum inte-
gral which in turn is determined by the large k2?/w limit
of S(k,w),

dkkS(k,w),  (7)

/ dk kS(k,w) = / d(k? /w) 2 Sk, w)
1/L 1/wL? 2

1/wl?,
~ / d(k? Jw) Zw=2k=24n
1/wL? 2

~w 2, (8)

so that in the limit ¢ — oo the probability density p(t)
becomes

* iwt|, |—n/2 1 — 1
p(t) ~ | dwe W™~ smm = me O

Thus the temporal autocorrelations decay as if the
wave functions would show conventional diffusive behav-
ior but in a fractal D,-dimensional space instead of the
Euclidean two-dimensional space. This interpretation is
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FIG. 2. The variance R(2,t) of the wave packet as a func-
tion of time ¢t showing conventional diffusive growth propor-
tional to ¢t* with an exponent x = 1.0 & 0.04.

further supported by observing that the slow decay of the
probability density p(t) is solely due to the shape of the
wave packet becoming non-Gaussian. The variance of the
wave packet still grows proportional to ¢ as is the case for
solutions to the diffusion equation in arbitrary dimension.
Figure 2 shows the variance R(2,t) = [ d?r|r|?|¢(r,t)|2
of the wave packet as a function of time ¢.

The local density of states |¢;(0)|? used as the weights
of the eigenfunctions ¢;(r) in constructing the wave
packet introduces a spectral measure. Because of the
eigenfunction correlations this measure is multifractal
even though the global density of states is noncritical
and smooth near the metal-insulator transition.

While the present calculation explains the slow decay
of temporal autocorrelations in terms of the multifractal
properties of the wave function, Ketzmerick et al. have
related this phenomenon in quantum systems with Can-
tor spectra to the multifractal properties of the spectral
measure [16]. They showed that é is given by the gen-
eralized dimension Dy of the spectral measure. We cal-
culated D, for the same energy interval that we used for
the wave packets from [16]

2

o) =S4 T Ies@)) | ~eD (e—0),

i E€eQi(e)
(10)

where the energy interval is partitioned into boxes Q;(¢)
of width e.

Figure 3 shows that even in the presence of disorder the
spectral measure at the center of the lowest Landau band
is multifractal with a generalized dimension D; = 0.8 +
0.05. Thus the relation § = D, holds for the quantum
Hall system, too. This allows us to directly relate the
generalized dimensions D; of the wave function and D,
of the spectral measure, D, = D,/2. This is to our
knowledge the first time that such a direct connection
could be made.

The correlation dimension D, was obtained [18] from
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FIG. 3. The scaling of the second moment «(¢) of the spec-
tral measure in the vicinity of the transition [Eq. (10)] with

fractal exponent D, = 0.8 +0.05 that coincides with the ex-
ponent § of Fig. 1 within the statistical errors.

the scaling of Py(\) ~ AP3, see Fig. 4, where | = AL is
the length of the boxes €2;(\) used to cover the fractal
eigenstate with energy F and

2

ROANE) =Y > les)P] . (11)

i reQ:(A)

In conclusion, we have established a relation between
the multifractal properties of wave packets built from
critical eigenstates near the center of the lowest Landau
level of a quantum Hall system and the multifractal prop-
erties of the corresponding spectral measure. Specifically
we find that the generalized dimensions D; of the wave
function and D; of the spectral measure are related by
D, = Dy /2. As a consequence of these multifractal prop-
erties, the temporal autocorrelation function p(t) decays
with a nonconventional exponent § = Dy/2. Thus the
probability for the wave packet to stay near the origin
after long times is greatly enhanced compared to con-
ventional diffusion in two dimensions. This behavior can
be interpreted as a wave packet showing conventional dif-
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FIG. 4. The scaling of the second moment P;()\) ~ AP? of
critical states near the transition with the correlation dimen-
sion Dz = 1.62+0.02 fulfilling the relation D; = Dz/2 within
the statistical errors.
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fusion on a Dy-dimensional fractal.
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