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One-Electron Spectral Weight of the Doped Two-Dimensional Hubbard Model
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We have calculated the single-particle density of states N(to) and the spectral weight A(p, at) for the

doped two-dimensional Hubbard model by combining quantum Monte Carlo simulations with the
maximum-entropy analytic continuation technique. We present results for various values of the doping,
temperature, and Coulomb repulsion U. For su%ciently strong Coulomb repulsions and near half filling,
a Mott-Hubbard pseudogap exists. In this case, we find that a peak develops at the top of the lower

Hubbard band near the Fermi level at temperatures of order the hopping t. The structure of this peak is

similar to that seen in the infinite-dimensional Hubbard model.

PACS numbers: 71.27.+a, 74.20.Mn

Photoemission spectroscopy [1-5] provides important
information on the one-electron density of states N(co)
and angular resolved spectroscopy can in principle probe
the spectral weight A(p, to). Numerical results from

band structure calculations [6] give important informa-
tion on the shape of the Fermi surface. However, these
calculations do not take into account dynamic correla-
tions produced by the electron-electron interactions which

are thought to play an essential role in determining the
spectral weight distribution in strongly correlated systems
such as the cuprates or the heavy fermion systems. Vari-
ous approximate many-body calculations [7,8] as well as
phenomenological suggestions [9] have been made for the
structure of N(ra) and A(p, ra); however, it is difficult to
determine the validity of these because of the absence of
a small parameter or exact results with which to com-
pare. One method which has proved useful is the exact
diagonalization of small clusters. For example, the spec-
tral weight and density of states have been calculated for
4X4 Hubbard clusters [10,11]. However, here questions
of lattice size and degeneracy have been raised and one
would like to obtain results for larger clusters. One ap-
proach, applied successfully to the half-filled two-
dimensional Hubbard model [12-14], involves combining
finite temperature quantum Monte Carlo techniques [15]
with maximum entropy [16] estimates to obtain N(ro)
and A(p, ro). Here, we extend this approach to the two-
dimensional Hubbard model doped away from half filling

[17]. Specifically, we present results for N(to) and

A(p, to) for 8&8 lattices with various values of the filling

(n), temperature, and on-site Coulomb interaction U.
For a strong Coulomb interaction (U of order the

bandwidth) we find in agreement with previous studies
[10,18] that when the system is doped, the chemical po-
tential shifts from the center of the gap, appropriate to
the half-filled system, to near the top edge of the lower
Hubbard band. In addition, spectral weight is trans-
ferred to the upper part of the lower band extending out
to form a pseudogap region. Furthermore, a peak in

N(co) is formed on the upper part of the lower band near

G;t(r) —(T,et (r)e; (0)).

Here the expectation value is the trace over the grand
canonical ensemble and cj (r) exp[r(H —ItN)]cj
xexp[ —r (H —ItN)] is the usual imaginary-time depen-
dent operator. By Fourier transforming on j—i we ob-
tain G(p, r) which for r &0 is related to the spectral
weight by

G(p, r) -—'+" A (p, to)e
dN—oo l + pN

(3)

As previously described [12-14,16], a maximum entropy
estimate can be used to invert Eq. (3) and obtain
A(p, ro). Likewise data on G;;(r) give the density of
states N(to). As is known, such calculations require high
quality data. The results reported here have been ob-
tained by making over 10 updates of all the Hubbard-
Stratonovich variables, and G(p, r ) had statistical error
less than 0.5%. As discussed in Refs. [12-14], various

the Fermi energy. A number of these same features ap-
pear in the exact diagonalization studies of the 4 x 4 clus-
ter [10] as well as in recent work on the infinite-
dimensional Hubbard model [19,20]. We believe that
these results are therefore not artifacts of small lattices,
but rather represent the physical effects of strong
electron-electron correlations. They provide a useful test-
ing ground for approximate theories and a reference for
the type of behavior which should be observed in photo-
emission of strongly correlated materials.

Here we study the Hubbard Hamiltonian

H —t g (c;tgt +city; )+Urn;tn;1
&ij &e i

on a two-dimensional square lattice. The operator c;t
creates an electron of spin o on site i and n; c;t~;
There is a near neighbor hopping t and an on-site repul-
sive interaction U. A chemical potential It is used to set
the filling (n) (n;l+n;l). Using Monte Carlo techniques
[15],we have calculated the single-particle finite temper-
ature Green's function
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with U=8t and (n) =0.87. On the 4X4 lattice, the sign

problem is less severe and we have carried out simulations
down to T=0.25t, where the average sign is 0.2. Com-
paring Figs. 1(b) and 2, we observe that the finite size
eAects are small, which is reasonable since these calcula-
tions have been carried out at relatively high tempera-
tures.

Figure 3 illustrates what happens for a smaller value of
the Coulomb repulsion, U=4t, at 0.87 filling. In this
case, there is little evidence for a pseudogap, but a peaked
structure near the chemical potential remains.

The results on N(nI) that we have presented here for
the two-dimensional Hubbard model are very similar to
those obtained by Jarrell [19] in the limit of infinite di-
mensions. In this limit, the single-particle self-energy be-
comes local [23,24], and hence one can exactly map the
problem to the single-impurity Anderson model [19].
Just as here, in d ~ a Mott-Hubbard gap opens at half
filling [19,201. Upon doping a pseudogap remains, and a
peak at the top of the lower Hubbard band grows as T is
lowered [19,20]. Since in d=~ the problem can be
mapped to the single-impurity Anderson model, this peak
corresponds to an Abrikosov-Suhl resonance associated
with the screening of the impurity magnetic moment by
the Fermi sea. The remarkable similarity of N(nI) for
d 2 to that of d ~ suggests that a similar type of
physics takes place in the d=2 Hubbard model. This
would then mean that the peak in N(tu) seen in Fig. 1(b)
is a virtual bound state, and is due to the screening of the
large magnetic moments formed by the strong on-site
Coulomb repulsion.

In order to have a closer look at the formation of the
peak in N(nI), we present results on the single-particle
spectral weight, A(p, nI) =(—I/Ir)ImG(p, nI), at p=(Ir/
2,tr/2) for (n) 0.87. Figures 4(a) and 4(b) show

A(p, nI) versus nI for U=gt and 4t, respectively, at vari-
ous temperatures. For the noninteracting system, the

p =(Ir/2, ir/2) point lies about 0.3t above the Fermi level.
Here we see that for U 8t and at high temperatures, the
spectral weight is pushed well below the Fermi level be-
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there is no Mott-Hubbard pseudogap. On the other
hand, A(p=(3Ir/4, 0),nI) peaks for nI &0. From the lo-
cations of the peaks in A(p, nI) on the 8x8 lattice, we
have estimated the shape of the Fermi surface by interpo-
lation and found that it resembles that of the noninteract-
ing system. However, for U=8t, A(p, nI) is still shifting
at these temperatures and it is not possible to estimate
the shape of the Fermi surface.

In summary, we have presented results on the single-
particle density of states and the spectral weight of the
two-dimensional Hubbard model obtained from maxi-
mum-entropy analytic continuation of Monte Carlo data.
We reported results for different values of the doping,
temperature, and Coulomb repulsion U. For the U=8t
case, the Mott-Hubbard pseudogap continues to exist for
fillings close to (n) 1.0. In addition, in this case, a peak
develops at the top of the lower Hubbard band for tem-
peratures less than the hopping t Its sim. ilarity to what is
observed in the d =~ Hubbard model suggests that this
resonance in the single-particle spectrum represents a vir-
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FIG. 4. Spectral weight A(p, aI) versus ro at p=(Ir/2, Ir/2)
for (n) =0.87, various temperatures, and (a) U=8I and (b)
U =4I. Here m =0 corresponds to the chemical potential.
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tual bound state, and that it is due to the screening of the
large magnetic moments forming at each lattice site. For
a weaker Coulomb repulsion such as U=4t, a pseudogap
is not observed at these temperatures, and the density of
states looks more similar to that of the noninteracting
system. The results for N(ro) and A(p, co) are also simi-

lar in many respects to the 4x4 exact diagonalization cal-
culations [101, suggesting that a consistent picture for the
one-electron spectral weight of the Hubbard model is em-

erging [25]. We note, however, that this picture in which
the chemical potential switches across the Mott-Hubbard

gap and spectral weight is transferred to the top (bottom)
of the lower (upper) Hubbard band under hole (electron)
doping is very different than the interpretation of some of
the photoemission spectroscopy results [3,26]. This im-

plies that either there is essential physics missing from
the Hubbard model which is required to describe the cu-
prates or that surface effects or Madelung energy changes
enter the experimental results.

We thank J. Allen, M. Jarrell, and Z. X. Shen for
helpful discussions. N. B. would like to acknowledge sup-

port by the National Science Foundation (DMR 91-
20000) through the Science and Technology Center for
Superconductivity, and D.J.S. would like to acknowledge

support for this work from the Department of Energy un-

der Grant No. DE-F603-85ER45197. S.R.W. would

like to thank the office of Naval Research for support un-

der Grant No. N00014-91-J-1143. The numerical calcu-
lations reported in this paper were performed at the San
Diego Supercomputer Center.

[1] Z.-X. Shen er al. , Phys. Rev. B 36, 8414 (1987); Z.-X.
Shen et a/. , Phys. Rev. Lett. 64, 2442 (1990).

[2] C. G. Olson et al. , Science 245, 731 (1989).
[3] J. W. Allen et al. , Phys. Rev. Lett. 64, 595 (1990).
[4] J. C. Campuzano et al. , Phys. Rev. Lett. 64, 2308 (1990).
[5] T. Takahashi er al. , Physica (Amsterdam) 170C, 416

(1990).
[6] R. E. Cohen, W. E. Pickett, and H. Krakauer, Phys. Rev.

Lett. 62, 831 (1989).
[7] A. Kampf and J. R. Schrielfer, Phys. Rev. B 4l, 6399

(1990);42, 7967 (1990).
[8] P. W. Anderson, Phys. Rev. Lett. 64, 839 (1990).
[9] C. M. Varma ei al. , Phys. Rev. Lett. 63, 1996 (1989).

[10] E. Dagotto, A. Moreo, F. Ortolani, J. Riera, and D. J.
Scalapino, Phys. Rev. Lett. 67, 1918 (1991); E. Dagotto,
J. Riera, and D. J. Scalapino, Phys. Rev. 8 46, 3183
(1992).

[11]D. J. Scalapino, Physica (Amsterdam) 185-189C, 104
(1991).

[12] S. R. White, Phys. Rev. B 44, 4670 (1991).
[13]S. R. White, Phys. Rev. B 46, 5678 (1992).
[14] M. Vekic and S. R. White, Phys. Rev. B 4'7, 1160 (1993).
[15] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J.

E. Gubernatis, and R. T. Scalettar, Phys. Rev. B 40, 506
(1989).

[16] R. N. Silver, D. S. Sivia, and J. E. Gubernatis, Phys. Rev.
B 4I, 2380 (1990).

[17] Preliminary results on this work have been reported in

Ref. [11].
[18] N. Furukawa and M. Imada, J. Phys. Soc. Jpn. 60, 3604

(1991}.
[19] M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).
[20] M. Jarrell and Th. Pruschke, Z. Phys. B 90, 187 (1993).
[21] N. Bulut, D. J. Scalapino, and S. R. White (unpub-

lished}.
[22] For a recent review of the sign problem and the Monte

Carlo technique used here see D. J. Scalapino, in

Proceedings of the Summer School on Modern Perspec-
tives in Many-Body Physics, Canberra, January 1993
(World Scientific, Singapore, to be published).

[23] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324
(1989).

[24] E. Miiller-Hartmann, Z. Phys. B 74, 507 (1989).
[25] It is also interesting to compare these results with the re-

cent results on the one-dimensional Hubbard model ob-

tained by M. Gulacsi and K. S. Bedell [Physica (Amster-

dam) B (to be published)], and by R. Preuss, A. Mu-

ramatsu, W. von der Linden, F. F. Assaad, and %. Hanke

(to be published).
[26] R. O. Anderson et al. , Phys. Rev. Lett. 70, 3163 (1993).

708


