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Exact Solution for Superfluid Film Vortices on a Torus
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The problem of describing the velocity field of quantized vortices on a torus is solved exactly by use of
Riemann's bilinear relations of 1857. The solution is used to discuss the behavior of superfluids on
porous media. The close connection between topology and quantization of circulation is emphasized as
wel) as its implications for a successful theory of the experiments.
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Since the success of the Kosterlitz-Thouless (KT)
theory of superfluid destruction on the plane in the late
70s there has been a renewed effort to understand the
superfluid transition in He films absorbed on porous ma-

terials (packed powders, Vycor, xerogel, aerogel). No
theoretical concensus has been reached on how to inter-

pret the experimental results. For example, the dimen-

sionality of the system at the superfluid transition is still

debated. Williams and co-workers argue for a two-

dimensional transition with KT type behavior for all sub-

strates [1]. Reppy and co-workers along with Chan and
co-workers argue that on Vycor the transition is similar

to the one in bulk helium and on xerogel and aerogel it is

some unknown transition [2]. Machta and Guyer (MG)
recognized early on that the connectivity of these porous
substrates creates a topologically complex surface (i.e.,
one with nonzero genus) that modifies the interaction be-
tween vortices and creates new ones, the so-called "pore"
flows [3]. This modification of the pair interaction was

implemented in the models that sought to explain the
transition as a modified KT transition by arguing that the
interaction energy between vortex pairs was linear with

the pair separation at distances longer than the pore di-

ameter [4].
The purpose of this paper is twofold: to present the

first exact solution for vortices on a nonzero genus sur-

face, thereby explicitly demonstrating the importance of
topology in modifying the film excitations, and to show

that for the surface we are considering, the torus, the in-

teraction between pairs goes linearly with their separation
only in the case of a single vortex pair. In other words,
the exact solution is nonlinear, which invalidates the sim-

ple approximation used by MG and Williams.
Consider superfluid film vortices on a plane. Since the

superfluid must obey the Feynman-Onsager quantization
hypothesis,

where r is the distance to the core. This flow field can be
represented by the complex potential function

p =n —ln(z),h (3)
m

with z=x+ly If w. e have a collection of vortices then

the flow potential can be immediately written down as a
sum of the individual potentials. A sum of these individu-

ally quantized flows is also quantized. The proof is sim-

ple: By using the Cauchy residue theorem we can see
that any contour integral will have a magnitude that de-

pends on the sum of the residues enclosed. Since we set
these residues to individually satisfy the quantization con-
dition, any sum of them will also obey it. This argument
is familiar to cognoscenti of the Kosterlitz-Thouless tran-
sition. But it does not work in a multiply connected sur-

face like those of the porous materials. It assumes a to-
pological condition that is not satisfied in general: A sim-

ple closed curve divides the plane into two regions, the in-

side and the outside (Jordan's curve theorem). In general
a vortex on a multiply connected surface that is locally
described by the same potential as the plane vortex, and
therefore satisfies the quantization condition around any
path that encloses the core, is not guaranteed to lead to
quantized flows around other paths. An example on the
torus will make this clear.

Consider two vortices of unit quantization on opposite
ends of a torus (see Fig. 1). As stated above, by picking

(~v dl n
h

m

we know that the velocity near a vortex core must be
tangential and with a magnitude of

v n— 1

FIG. 1. Torus with two film vortices on its surface.
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x pcosp, y psinp, z rsina,

with p given by the two radii of the torus as

p R+r cosa.

By defining new coordinates

rd8
R+rcos8 '

(4)

the strengths of the vortex potentials to be an integer of
the quantum of circulation, we can guarantee that the
circulation on paths of type 1 is quantized. But paths of
type 2 do not enclose either vortex. What is the circula-
tion about them? %'e can quickly calculate it by exploit-
ing the similarity of planar vortices to two-dimensional
Coulomb charges. This equivalence means that a calcu-
lation of circulation for vortices is the same as a flux cal-
culation for charges. Therefore, by noting that in this
symmetric arrangement each charge will have half its
flux on either side of the torus, we conclude that the vor-
tices create half a quantum of circulation on paths of type
2. This failure is remedied by adding pore flows around
the torus with balf a quantum of circulation. This exam-
ple exhibits what is required for writing down a quantized
flow on the torus: Vortices that locally look like quan-
tized planar vortices must have pore Aows added to
guarantee quantized circulation on all paths. Clearly,
none of these arguments are necessary when discussing a
classical fluid Aow. Thus, the problem of constructing
quantized vortex flows on a multiply connected surface
serves as another illustration of the close relationship be-
tween topology and quantum mechanics.

To construct the general solution we first do a confor-
mal mapping of the torus into a rectangle. The surface of
the torus (Fig. 2) is described by the equations

3 +g qp g(z —zi, ),
k

with 8 a complex constant as yet undetermined, and we

have written the Weierstrass zeta function g(z;2n, i2p),
defined on the normal rectangle, in an abbreviated
fashion [5l. Requiring that this field represent a Cou-
lomb field (i.e., no curl for the vector field) fixes the con-
stant 8 and we get an expression for the Coulomb field,

Fg —iE„=+qg gk+ gk+g(z zk)—. (10)
2g ) 2@2

2lt' 2p

The rl constants, q~ and g2, are given by evaluating the
Weierstrass zeta function at the half periods, i.e., g[
=g(n) and gz=((ip) To. obtain the Aow for the Auid

we would multiply this by i and change ql, to n(h/rn) to
obtain the velocity field v~ iv„—

But we know that this solution may not have quantized
circulation. How much pore flow do we have to add?
The symmetric placement of the two vortices in our ear-
lier example made it easy to guess the answer. In general
we would have to calculate the appropriate line integrals
along the g and rl directions. Here is where we can use
a remarkable theorem proved by Riemann in 1857 [6].
The original intent of the theorem was to relate Abelian
diA'erentials of the first and third kind. These relations
are called bilinear relations and while they apply in gen-
eral to any compact surface of arbitrary genus, in the
case of the torus they allow us to calculate the circulation
for any vortex arrangement in terms of the vortex posi-
tions. For our purposes the theorem can be stated as fol-
lows:

v dl = — —gnl, (ill, /2p),
m

we map the torus into a so-called "normal" rectangle
with a width of 2ir and height of 2p, where p is given as

v dl =+ —gnl, ((k/2n) .J g Nl
(12)

(7)

In this coordinate system we ean write the vortices that
are isomorphic to Coulomb charges by employing the
complex variable

z =(+irl

and using elliptic functions. The general solution to a lo-

cally 1/z field on the normal rectangle is of the form

FIG. 2. Turning the torus surface into a "normal" rectangle.

This is a physically satisfying solution since the sum

terms can be interpreted as the "topological dipole" of
the vortices. We coin this new term to underline the fact
that the result of the summation is a dirnensionless quan-

tity that is independent of the size of the original torus
and depends solely on the dimensionless variable p. It is

also clear that it arises because of the nontrivial topology
of the torus.

The construction of quantized vortex solutions is now

possible. Since we can always add quantized pore Rows

to an already quantized Aow the answer cannot be
unique, so let us construct the minimum energy Aow.

The Coulomb vortices we have solved for and the pore
flows are orthogonal vector fields over the torus [7].
Therefore, the minimum pore Aow needed in any ar-

rangement of vortices will always have half or less a
quantum of circulation. For example, the earlier ar-

rangement of vortices symmetrically placed around the
torus corresponds to the case g~ =0, rl~ =0, (2 =n, g2 =0.
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So Riemann's bilinear relations tell us

v dl 2 (h/m),4 g
([3)

which is what we deduced before from symmetry con-
siderations. The minimum energy flow would either add
or subtract a pore flow in the g direction with half a
quantum of circulation.

The implications of the exact solution for more realistic
models of porous substrates are as follows. The first is

the reaffirmation of the observation by MG that the to-
pology of the substrate couples Coulomb vortices to the
pore flows because of the constraint of quantized circula-
tion. However, implementing this insight in a realistic
model of the substrates, like the "jungle-gym" lattice (see
Fig. 3), is not easy. As stated before, the approach used
so far is to approximate the vortex interactions by a
linear term, the so-called "string picture. " The solution
presented here for the torus exhibits this effect for a sin-

gle Coulomb vortex pair because the topological dipole of
the pair is proportional to their separation. This requires
the addition of a pore flow with energy proportional to
the pair separation if the flow is to be quantized. The
case of multiple pairs, however, cannot be treated this
way because the topological dipole will not be linear in

the pair separations. In other words, the presence of oth-
er vortex pairs affects the circulation about the nonen-
closing paths and therefore the pore flows needed to
create the quantized flow of lowest energy are not the
simple sum of what is required for the individual pairs.
This is in marked contrast to the case of the plane where
the quantization of Coulomb vortices is guaranteed by
setting the correct "charge. " The implication for a KT
type model is obvious since such a scheme involves in-

tegrating out the effect of vortex pairs separated by less
than the length scale of the current iteration. Renormal-
izing out vortex pairs that always have an energy linear in

their separation is selecting out a subset of all possible
vortex arrangements that satisfy quantization of circula-
tion. This feature must be justified before this approxi-
mation can be considered to capture the essential physics
of the superfluid transition in porous media.

The second lesson concerns the dispute over the correct

model to use for the films at the superfluid transition.
Clearly nothing can be said in the context of this paper
about the specific details of transition (critical exponents,
etc.), but the following observation can be made about
comparing results in packed powders with the other sub-

strates. There are two dimensionless measures of length
for vortices on the torus. One is set by the torus itself via

the dimensionless variable p, the other is given by au/r
where ao is the size of a vortex core. Restricting our-
selves to small values for this latter measure, we can see
that the energy of a vortex pair is determined by p. This
parameter can vary from zero to infinity. A value of p
close to zero represents a skinny torus, like a bicycle tire.
A value of p close to infinity represents a fat torus, likel a
bagel. Packed powders are made up of grains that we

can take to be essentially spherical. They can be expect-
ed to create pores that are akin to the fat torus limit be-
cause of the narro~ contact points between kissing
spheres. It is interesting to note that the large p limit

yields the same solution as the cylinder case solved by
MG. In our case, however, the cylinder exists in the di-

mensionless space of the variables g and ri. In contrast, a
substrate like Vycor does not have these "kissing" points.
Using a value of 0.30 for the porosity of Vycor and as-
suming that Vycor can be described by the jungle-gym
model of MG, we arrive at a value of p of order unity [8].
This is on the side of the thin torus limit. Therefore,
packed powders and Vycor are located in different re-
gions of the p-parameter space. Stated differently, the
ratio of the distance between intersections of the pores
and their diameter is different in the two materials. This
is crucial because of the constraint of quantized circula-
tion. The efl'ect of a large p is to make it difficult for pore
flows with circulation around the small contact points to
be created since their energy is proportional to p itself.
We speculate that this feature may explain the difference
between the experimental results in packed powders
versus materials like Vycor.

In conclusion, we have shown that the interaction be-
tween film vortices in topologically complex substrates is
nontrivial because of the quantization of circulation. An
explicit solution in the case of the torus was presented.
The approximation that vortex pairs have an energy pro-
portional to their separation was shown to be incorrect for
multiple vortex pairs. We speculated that the dependence
of this solution on the parameter p may affect the nature
of the superfluid transition in different substrates.

(A)

FIG. 3. "Jungle-gym" model of porous materials: (a) Low-p
lattice; (b) high-p lattice.
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