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A spatiotemporal system is modeled by a coupled map lattice.

Feedback pinnings are used

to control chaos of the system by stabilizing a certain unstable reference state. As the pinning
distribution is dense enough, the unstable state can be stabilized. If the density is low, the reference
state may not be approached asymptotically. In this case, however, the pinnings can still effectively
suppress chaos and produce rich spatiotemporal structures. If a solution is locally stable while the
transient process to this state is extremely long and chaotic, pinnings of very low density can well

control the transient chaos.
PACS numbers: 05.45.+b, 47.20.-k

Recently, controlling chaos has become an active field
in the study of nonlinear dynamics [1-9], due to the great
potential of applications. However, up to date the re-
search has mainly focused on the low-dimensional sys-
tems. Actually, controlling chaos (or controlling turbu-
lence) in spatiotemporal systems is even more important.
For instance, controlling chaos or turbulence in plasma
devices, laser systems, chemical reactions, etc., is of prac-
tical importance, where both spatial and temporal depen-
dences should be considered. To control chaos in these
systems, one has to deal with the problem of controlling
the total systems by modulating very few freedoms. A
very simple idea in this regard is to put some local con-
trolling (pinnings) in space. Therefore, it is of crucial
importance to study how dense the pinnings should be
for controlling chaos, and how the pinnings influence the
dynamics of the system. These two problems will be the
main concerns of the present Letter.

Roughly speaking, there are two ways for controlling
chaos: a feedback control [1-6] and a nonfeedback one
[7-9]. In the former case, one takes a given unstable ref-
erence orbit, which is a trajectory of the unperturbed
system, as the goal of the controlling. The controlling
input is very small when the system is well controlled.
On the contrary, the latter is not related to a certain
particular trajectory. The aim of controlling is to sup-
press chaos. Therefore, the controlling input does not
vanish as the system is under control, and the dynamical
structure of the controlled system may be considerably
different from the original system. In this Letter we con-
sider a well known coupled map lattice (CML) model
[10-14]. We start from the feedback control to see how
dense the pinnings should be for controlling the system
to certain reference state. As the pinning density reduces
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below a critical value the system can no longer be locked
to the given state. However, the pinnings still play an im-
portant role to create various interesting spatiotemporal
structures, and to effectively suppress chaos.

Here we consider a one-dimensional CML model [11-
14]:

Tn+1(8) = (1- E)f[:rn(i)]
+ie{flen(i — DI+ flenG+ 1]} (1)
where 1 = 1,2, ..., L are the lattice sites, and L the sys-
tem size. In this Letter, the periodic boundary condi-
tion, T,(i + L) = z,(i), is assumed. Moreover, we take
f(z) = az(l — z). With single site (L = 1), model
(1) reduces to the well known logistic map, which has
a period-doubling cascade with the accumulation point
at a, = 3.5699456..., and chaos can be found in the
regime a. < a < 4. The dynamical behavior of model (1)
with L > 1 has been also extensively investigated and
quite well understood [10-14]. The coupling terms in (1)
introduce very rich spatiotemporal patterns, such as ho-
mogeneous stationary solution; inhomogeneous station-
ary solutions (spatial patterns); homogeneous periodic
solutions; and inhomogeneous periodic solutions (run-
ning or standing waves). In a stable chaotic state, all
these patterns embedded in the chaotic attractor are un-
stable. In Fig. 1(a) we plot the space-time diagram of
the system with € = 0.8,a = 4. The lattice length is
taken to be L = 60, and the initial condition is prepared
as pseudo-random numbers uniformly distributed in the
interval [0,1]. Afterwards, we will always take L = 60
and use such an initial condition unless specified other-
wise. The motion of the system is fully turbulent at these
parameter values [11], as clearly shown in Fig. 1(a).
To control this system, we use pinnings defined in the
following way:
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where I is the distance between two neighboring pin-
nings, %, (%) the reference state to be stabilized, p, (7) the
feedback strength added to the ith site, and §(j) =1 for
j = 0 and §(j) = O otherwise. The advantage of this
type of feedback is that, on one hand, the nonlinear part
effectively avoids the overflow in numerical simulations,
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FIG. 1. (a) Space-time diagram for CML (1) with

e = 0.8,a = 4, and L = 60. Pixels are painted black if
Zn (i) > 0.75, and left blank otherwise. The system dynam-
ics is, obviously, chaotic. (b) Homogeneous unstable station-
ary state is approached by controlling sites i = 1,3, 5,...,59
with p = 3,¢ = 08, and a = 4. The figure is plotted in
the same manner as (a). (c) The unstable space-period-two
pattern, Z,(2j — 1) = 0.536537..., Z,(2j) = 0.880129...,
j=12,...,30, controlled by pinning sites ¢ = 1, 5, ...,57 with
p=2,¢=0.8,a =4 Pixels are painted black if z,(z) > 0.88,
and left blank otherwise.

®3)

on the other hand, in the vicinity of the reference state
the controlling is the conventional linear negative feed-
back. The main idea is to control the entire system by
controlling a part of the sites, i.e., by setting pinnings
which have spatial density 1/1.

First we want to control the system by stabilizing the
homogeneous stationary state

Zo(i) =z" =1-1/a, (4)
and an inhomogeneous stationary state
= e B++vB?2-4C
a:n(2] - 1) = Q= ’
2a(2e — 1)
B —-+/B?-4C
T ] e ———————— ) = 1 2 ese
Zn(27) 2a(2e — 1) sy J 12, L/2,  (5)

where B = 1—a+2ae and C = € —ae— 2ae. Both states
are unstable for ¢ = 0.8 and a = 4 without controlling.
For simplicity, we take uniform control, i.e., pn(i) = p.
We control state (4) with p = 3,1 = 2 [Fig. 1(b)], and
state (5) with p = 2,I = 4 [Fig. 1(c)], respectively. It is
worthwhile pointing out that, in both cases, the attract-
ing basins of the reference states (after controlling) are
very large. Although the initial conditions are random
numbers ranging from 0 to 1, the system finds the desired
patterns [i.e., Egs. (4) and (5) in Figs. 1(b) and 1(c),
respectively] very quickly. This fact is very important for
practically controlling the system to desirable patterns.
As the system reaches the given aim state the feedback
vanishes, and then the dynamics of the unperturbed sys-
tem is not changed.

Obviously, the controlling efficiency depends on the
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FIG. 2. The controllable regions of the homogeneous sta-
tionary state (4) in the a-¢ plane. The line numbers indicate
the reciprocals of the minimal pinning density. Above each
line the reference state can be stabilized by the pinnings with
the indicated density.
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coupling strength € and the nonlinear coefficient a. In
Fig. 2 we plot the numerical result of I, in the a-¢ plane,
where 1/, is defined as the minimal density of pinnings
for stabilizing the homogeneous stationary state. From
the figure it is clear that the minimal pinning density can
be considerably reduced by decreasing a and increasing e.
It seems to us that when a — 3 (period doubling point)
the quantity 1/I, may approach zero (for L — oo, of
course) for nonzero €. The physical interpretation of Fig.
2 is clear. The deeper the system sinks into the chaos
regime, the more pinnings are needed to suppress chaos
and the stronger coupling is needed to force the uncon-
trolled sites following the discipline of the reference state.
We have investigated I, in the a-e¢ plane for other ref-
erence states and similar results are obtained, which will
be discussed in another paper.

The unstable structures can be stabilized only for a cer-
tain interval of p. As I increases the interval of p for an
effective controlling decreases. In the case of I > I,,,, the
pinning density is so low that the reference state cannot
be stabilized for any p; then the system can no longer be
driven to the reference state by the feedback. Neverthe-
less, the response of the system to the controlling in this
case is still very interesting. The chaotic motion of the
unperturbed system can be well controlled, and rather
rich spatiotemporal patterns, which are stable against
perturbations, can be induced by pinnings. In Fig. 3 we
plot z,(¢) versus i for n from 9800 to 10000, where we
again use (4) as the reference state, and take ¢ = 0.8,
a = 4, and I = 20 (a very low pinning density, much
lower than I,,!). As pinning strength p increases, chaos of
the system is more and more effectively suppressed. One
finds successively fully developed turbulence [Fig. 3(a),
p = 0.5], frozen mixture of standing wave regions and
chaotic regions [Fig. 3(b), p = 1.2], and perfect standing
waves [Fig. 3(c), p = 2.0], for the same random initial
condition. The chaos level is reduced by increasing p.
By varying the initial state, the asymptotic state can be
modified and very rich spatiotemporal patterns are ob-
served. However, the main feature of suppressing chaos
by increasing p from zero is not changed. For even larger
p we are faced again with turbulent motions and over-
flow of numerical simulations. In Fig. 3 our control can
be regarded as nonfeedback control since the reference
state is not approached as t — oo and the perturbation
is finite in the asymptotic state. It is easy to verify that,
under the periodic boundary condition and for L = 20,
the motion of system (1) is fully turbulent at the param-
eter values € = 0.8 and a = 4. Thus, the efficiency of
controlling chaos by such rare pinnings is strikingly high.

In recent years the study of transient chaos
[11,12,14,15] has attracted much attention due to the
practical importance. In a certain case, the system ap-
proaches a stable regular motion as ¢ — co. However,
the transient process is extremely long and chaotic; one
can observe only chaotic motion for finite time. The
study of transient chaos becomes even more useful in
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FIG. 3. (%) versus i for n from 9800 to 10000 with I = 20.
Pinnings are input at ¢ = 1,21,41, L = 60,¢ = 0.8,a = 4. (a)
p=0.5; (b) p=1.2; (c) p=2.0.

spatiotemporal systems. In CML (1), infinite stable non-
turbulent patterns exist in the “period-window” regime;
the corresponding attracting basins, however, are usually
very small, and the times needed for the system to en-
ter these basins increase exponentially with the system
size [11,12,14]. Thus, controlling the transient chaos, en-
larging the attracting basin of a given stable state, and
shortening the relaxation time towards this aim state are
very important tasks in CML systems and other space-
time-dependent systems.

At the parameter values ¢ = 0.3 and a = 4, system
(1) has a running wave solution of time-period-two and
space-period-four, which is shown in Fig. 4(a). (Here we
take an initial condition very near the running wave state,
the system approaches the aim state very quickly since
the state is stable.) If we prepare the initial condition as
random numbers uniformly distributed in [0, 1], the tran-
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FIG. 4. (a) Time-period-two and space-period-four run-
ning wave for € = 0.3 and a = 4. The initial condition is
prepared as zo(%) = Zo(i) + o with Zo(i) being the reference
state and o being random numbers, |o| < 0.04. Pixels are
painted black if z,(z) > 0.89, and left blank otherwise. (b)
The transient process of the system evolution under control-
ling. pn (i) = 2 for the sites with Z,(:) = 0.89872907..., and
Pn() = 1 for those with Z, (i) = 0.458 413 79.... Pinnings are
input at sites ¢ = 1,13,25,37, and 49. The initial state is
prepared as random numbers uniformly distributed in [0, 1].
The figure is plotted in the same manner as (a) except we
take data once every 49 iterations.

sient time to the stable running wave state increases very
quickly as L increases. For L = 60 the average transient
time is of order 102 iterations or more [14]. It is practi-
cally impossible to reach this state in our computer. The
motion in the transient process is purely turbulent, like
what is shown in Fig. 1(a). Now we feedback one site
for each of the twelve sites in the manner of Eq. (2) with
I = 12. The pinning density is very low. For a wide
range of P, (i) the transient chaos can be effectively con-
trolled. In Fig. 4(b) we show the transient process of the

system under controlling. The relaxation time is about
5000 which is uncomparably shorter than that without
controlling. The controlling result is rather robust. We
have taken various initial random conditions in the vari-
able space [0, 1], the system always finds almost the same
attractor, and realizes the running wave with few defects
(in most cases, one or two pairs of defects) but in Fig.
4(b) no defect exists.

It is emphasized that the approach of controlling chaos
suggested in this Letter for the CML systems can be used
for controlling chaos in partial differential equations. The
idea to control the total system by pinning certain local
points is expected to be particularly effective for control-
ling chaos in continuous extended systems; that, however,
will be investigated in a separate paper.
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FIG. 1. (a) Space-time diagram for CML (1) with
e = 0.8,a = 4, and L = 60. Pixels are painted black if
zn(i) > 0.75, and left blank otherwise. The system dynam-
ics is, obviously, chaotic. (b) Homogeneous unstable station-
ary state is approached by controlling sites ¢ = 1,3,5,...,59
with p = 3,¢ = 0.8, and a = 4. The figure is plotted in
the same manner as (a). (c¢) The unstable space-period-two
pattern, Z,(25 — 1) = 0.536537..., T,(27) = 0.880129...,
j=1,2,...,30, controlled by pinning sites i = 1, 5,...,57 with
p=2,¢ = 0.8,a = 4. Pixels are painted black if z, (i) > 0.88,
and left blank otherwise.
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FIG. 4. (a) Time-period-two and space-period-four run-
ning wave for € = 0.3 and a = 4. The initial condition is
prepared as zo(i) = Zo(i) + o with Zo(i) being the reference
state and o being random numbers, |o| < 0.04. Pixels are
painted black if (i) > 0.89, and left blank otherwise. (b)
The transient process of the system evolution under control-
ling. pn(i) = 2 for the sites with Z,(¢) = 0.89872907..., and
Pa(i) = 1 for those with Z,, (i) = 0.458413 79.... Pinnings are
input at sites ¢ = 1,13,25,37, and 49. The initial state is
prepared as random numbers uniformly distributed in [0, 1].
The figure is plotted in the same manner as (a) except we
take data once every 49 iterations.



