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Localization of Light Waves in Fibonacci Dielectric Multilayers
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We have measured the optical transmission of quasiperiodic dielectric multilayer stacks of Si02 (A)
and Ti02 (B) thin films which are ordered according to a Fibonacci sequence SJ+~ =[S, ~,S,], with

So [B] and S~ {A] up to the sequence S& which consists of 55 layers. We observe a scaling of the
transmission coefficient with increasing Fibonacci sequences at quarter-wavelength optical thicknesses.
This behavior is in good agreement with theory and can be considered as experimental evidence for the
localization of the light waves. The persistence of strong suppression of the transmission (gaps) in the
presence of variations in the refractive indices among the layers is surprising.

PACS numbers: 42.25.Bs, 71.55.Jv, 77.55.+f

Localization of electronic states due to disorder (An-
derson localization) is one of the most active fields in

condensed-matter physics [I]. Recently it was recognized
that localization could occur not only in disordered sys-

tems but also in the deterministic quasiperiodie systems
[2]. In a quasiperiodic system two or more incommensu-
rate periods are superimposed, so that it is neither a
periodic nor a random system and therefore can be con-
sidered as intermediate between the two.

In one dimension, a specific quasiperiodic Schrodinger
equation based on the Fibonacci sequence can be ana-

lyzed by a renormalization-group type theory [3,4]. In

this model a simple binary quasiperiodic Fibonacci se-

quence is used which is constructed recursively as

SJ+t =[Sj-t,SI] for j~ I; with Sn=[B] and St =[A].
In this sequence one has Sz = [BA], S3 = [ABA], S4
= [BAABA], Ss [ABABAABA j, and so on. It has been
shown that the wave functions for this case (S ) are not

exponentially localized but rather quasilocalized (less
than exponential decay at large distance), and that they
have a rich structure including scaling. Furthermore,
many detailed and exact results have been proved for the
spectrum of this problem [5].

While the localization of states was originally regarded
as an electronic problem, it was later recognized that the

phenomenon is essentially a consequence of the wave na-

ture of the electronic states. Therefore such localization
can be expected for any wave phenomenon, such as
acoustic waves [6-8] and even optical waves [9], where

the latter have relatively high frequencies. There are dis-

tinct advantages to studying localization using a classical
wave equation as opposed to the quantum mechanical
electronic problem. First, in the electronic problem there
are other possible interactions, such as electron-electron
and spin-orbit effects, that can complicate the situation.
In addition, the problem is not strictly one dimensional.
From an experimental perspective the fabrication of Fi-
bonacci lattices can be difficult because of the presence of
such imperfections as defects at the interfaces that tend
to mask the effects of the localization.

In addition to localization, there are other important

properties of classical wave phenomena that have analogs
with the electronic problem. One such property is the oc-
currence of a complete "photonic band gap" in certain
dielectric microstructures. This phenomenon is the ab-
sence of photon propagation modes in any direction for a
range of frequencies. Recently this effect has been exper-
imentally verified [10] for the transmission behavior of
rnicrowaves in a periodic array of air holes in a material
with high refractive index.

In disordered dielectric materials complete localization
of light waves (sometimes called "photon localization" )
still lacks experimental proof. However, several groups
have already been able to show the existence of weak

localization, which is a precursor to true localization,
demonstrated in coherent baekscattering of light under
certain conditions [11-14]. This effect arises from con-
structive interference of backward-scattered waves and

can be used to obtain values for the optical diffusion

coefficient. Complete localization would be indicated by
a vanishing diffusion coefficient. Very recently, an unusu-

ally small optical diffusion coefficient consistent with an

onset of localization has been realized in transmission and
scattering experiments with microwaves in random mix-

tures of aluminum and Teflon spheres [15]. Theoretically
predicted scaling properties of the transmission with sam-

ple thickness were verified.
Concerning quasiperiodic systems, there have been at-

tempts to observe the exotic wave phenomena of Fibonac-
ci systems in synchrotron x-ray scattering [16] and Ra-
man scattering spectra [17,18] of semiconductor superlat-
tices [19],and in propagation modes of acoustic waves on

corrugated surfaces [20,21]. Generally, however, there
are extraneous effects in these systems and it is difficult to
study the localization phenomenon by itself.

In this paper we report experiments on optical Fi-
bonacci dielectric multilayers. In this system the one-
dimensional theory is strictly valid [22]. Compared to
semiconductor superlattices the production of thin film

dielectric multilayers is easier, and it can be expected
that the effects of quasilocalization for the energy band
structure become immediately apparent in a simple rnea-
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surement of the optical transmission coeScient.
The transmission of a normally incident light wave

through interface 8 A is represented by the transfer
matrix

1 0
0 n„/na

II =—sin 28sin
4 nB

nB

This constant is always positive and represents the
strength of the quasiperiodicity. For the case B=mz
(half-wavelength layer), 1=0 and the transmission
coe%cient is 100%. For the case 8=(m+

& )x (quarter-
wavelength layer), I is maximum and the quasiperiodicity
is most eAective. Also, for the latter case the dynamical
map has a period of six, which means that Mj =MJ+6 for
any j at that particular phase. This fact implies that the
transmission coefficient T[SJ] exhibits a self-similar be-
havior about b=(m+ 2 )z, with T[S&+3]=TlS~]. (The
period of the transmission coeScient is three recursions
rather than six, due to the explicit forms of the six ma-
trices M~, . . . , M6 [22,23].) The scaling behavior of the

and the transmission through interface A 8 by

1 0
0 tip/f1'

The propagation within a layer of material A (B) is de-
scribed by

cos~A (B)
—»»A (B)

Ta(B)—
sin8~(B) cosB~(B), '

where the phases 6 are given by B~(B)=n~(B)kd~(B),
where k is the wave vector in vacuum and where d~(B)
are the thicknesses of the layers.

For a finite Fibonacci multilayer Sj which is sand-
wiched between two media of material of type A the cor-
responding transfer matrix is

M, =M, pMj ),
with the initial conditions M ~

= T~ and M2 = T~BTB
x TB~T~. The number of layers in Sj is denoted by Fj,
and is given recursively by Fj =Fj—t +Fj —2 with Fp

=F~ =1. From this expression the transmission coef-
ficient can be calculated as

Tls, 1 = 4

IM I'+2
where IM~I is the sum of the squares of the four ele-
ments of Mj.

The equation for Mj has been considered as a dynami-
cal map and it has been shown that a constant of motion
exists in all cases [3]. For the case of normal incidence
and b~ =Ba =b, a constant of motion is [22]

transmission coeicient is characterized by the scale fac-
tor f=[1+4(l+l) ]' +2(1+I) The quantity f gives
the scale change of the wave vector between spectra
T[SJ] and TlS~ +3].. Therefore, quasilocalization of the
light waves in a Fibonacci dielectric multilayer is demon-
strated by the self-similarity of the transmission coeAi-
cient under the given boundary conditions.

As thin film materials we chose silicon dioxide (8) and
titanium dioxide (B). These are virtually absorption-free
above 400 nm. Their indices of refraction at 700 nm are
n~ = 1.45 and nB =2.30, respectively. Relative film

thicknesses d~ and dB of materials A and 8 were chosen
such that the phase shift for normally incident light was
the same, i.e., 8~ =BB=8. In this case n~d~ =nBdB.
Furthermore, the individual layers were taken as
quarter-wave layers, for which the quasiperiodicity is ex-
pected to be most effective [21], and the central wave-
length was chosen as 700 nm (14285 cm '). These con-
ditions imply physical thicknesses dz =(700 nm)/4nz
=121 nm and dg =(700 nm)/4na =76.4 nm.

The layer systems were electron-gun evaporated on op-
tically polished substrates of fused silica (n =1.46, 25
mm diameter, 6.5 mm thickness). The base pressure of
the evaporation chamber (Balzers BAK 600) before
evaporation was better than 10 mbar. In order to
achieve absorption-free coatings, layers were deposited in

an oxygen atmosphere of several 10 mbar. The sub-
strate temperature was 300'C. Quarter-wave and half-
wave optical thicknesses were optically monitored at 700
nm and adjusted to an accuracy of ~2%. The coated
substrates were contacted to an uncoated substrate of the
same thickness using index matching Auid, and the
transmission of the resulting sandwiched Fibonacci coat-
ing stacks was measured as a function of wave number
X =k/2z in the 25000 cm ' (400 nm) to 5000 cm ' (2
pm) range (Cary 17 D spectrophotometer).

The experimental results for transmission are shown in

Fig. 1 for Fibonacci sequences S4 to S9 as curves a, and
compared for each case to calculated spectra shown as
curves b. [The central wave number A, =k/2z is at 14285
cm ' (700 nm) and corresponds to a phase shift of 1.5x.]
In curves b the wavelength-independent reAectivity at the
two air/substrate interfaces (-8%) is not taken into ac-
count and therefore has to be subtracted for comparison
with curves a, for which the maximum measured trans-
mission reaches 92%. As a general trend it can be seen
that with increasing layer number of the sequences, more
and more transmission dips develop and some of them ap-
proach zero transmission (one-dimensional photonic band

gap); therefore the total transmission over the spectral re-

gion of interest decreases. Nearly identical transmission
behavior as compared to the theory is observed for Fi-
bonacci sequences S4=[BAABA], Ss=[ABABAABA],
S6=[S4,Ssj [BAABAABABAABA], S7 [Ss,S6}, and

Ss = [S6,S7j. Small asymmetries of the transmission
peaks occur in S6 and S7 near the central wave number,
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and a small extra peak at 16500 cm ' appears in Ss. In

S9, having 55 layers, spectral locations and shapes of the
transmission peaks are still in good agreement with calcu-
lated spectra in the range 6000-10000 cm '. At higher
energies, the spectral positions of the peaks still agree
(with an exception near 20000 cm '); however, the rela-
tive strengths of the peaks are now severely distorted.

In order to check the predicted scaling of the transmis-
sion spectra about b (m+ —,

' )z (corresponding to the
central wavelength 700 nm), we determine the scaling
factor f from f [1 +4(I+I)2] '~ +2(1+I), and I

4 sin bsin b(n~/na —na/n~) as f=5.11, and com-

pare in Fig. 2 the transmission spectra Ss and Ss with

scaled spectra Ss and S9, respectively. The experimental
curves are shown as solid curves, the calculated ones as
dashed curves. Note the scale change for spectra Ss and

Ss, compared to Ss and Ss. The self-similarity of spectra
Ss and Ss, and Ss and Ss, respectively, is evident around
the central wavelength, while major deviations occur in

scaled S9 near 16000 cm '. Some of the discrepancies
in Fig. 2 outside the main band near 15000 cm ' are to
be expected since the scaling factor f must be applied
from the center of each "optical band" and, in addition,

f 5.11 is only applicable to the central band. We attri-
bute the distortions in the relative strengths of transmis-
sion peaks in Ss and Sy to experimental diSculties con-
nected with depositing a large number of layers, most im-

portantly perhaps variations in the index of refraction. It
is known that with increasing layer number the films be-
come less and less ideal, i.e., the structure of the films
changes slowly from an initial homogeneous amorphous
phase to an inhomogeneous porous columnlike crystalline
phase with empty spaces in between crystallites (pore di-

ameter —10-100 nm). This change in morphology leads
effectively to a change in the index of refraction of the
film layers deposited later with respect to the initial ones.
In order to simulate this expected effect we calculated the
transmission of sequence S9 assuming a 5% linear modu-
lation of the index of refraction with increasing layer
number. (The 5% modulation was chosen empirically as
the "best fit" to the data. Experimentally, such a mona-
tomic variation in the index is expected because of sys-
tematic changes in the composition of the layers with

growth time. ) The result is shown in Fig. 3, where the
experimentally obtained spectrum is shown again for

comparison. In agreement with experiment the simula-
tion shows rather little deviation in the lower energy
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FIG. 2. Comparison of transmission spectra S5 and S6 with
scaled spectra Ss and S&, respectively, showing self-similarity of
corresponding transmission spectra. Relative to S5 and S6 the A,

axis of spectra Ss and S9 is expanded by the scaling factor
f 5 ll. Solid curves: e. xperiment; dashed curves: theory.
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FIG. l. Optical transmission spectra (transmission T versus wave number A,) for Fibonacci dielectric coating stacks S4 to S9. The
dielectric stacks are sandwiched between 6.5 mm thick fused silica substrates. Curves a: experiment; curves b: theory.
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FIG. 3. Transmission spectra as a function of X, for Fibonacci
dielectric coating stack S9. (a) calculated spectra for layer sys-

tem with 5% linear modulation of index of refraction; (b) ex-

perimentt.
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range (X~ l0000 cm '), but at higher energies large
changes in relative peak heights, spectral positions, and

resolution occur.
It is interesting to note, particularly in the spectra for

S9 in Fig. 3, that although there are clearly changes in

the positions of the peaks in transmission between the cal-
culated and experimental spectra, the suppression of the
transmission in the gaps is essentially unaffected by the
variation in the indices of refraction. This insensitivity is

encouraging for the possible use of these effects in optical
devices since layer-to-layer variations are inevitable in

real systems.
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Note added. —Since the submission of this manuscript
experiments have been published [24] that contain results
similar to some of those discussed in this Letter.
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