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Practical Solution to the Monte Carlo Sign Problem:
Realistic Calculations of Fe
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We present a practical solution to the "sign problem" in the auxiliary field Monte Carlo approach
to the nuclear shell model. The method is based on extrapolation from a continuous family of
problem-free Hamiltonians. To demonstrate the resultant ability to treat large shell-model problems,
we present results for Fe in the full fp-shell basis using the Brown-Richter interaction. We find
the Gamow-Teller P strength to be quenched by 58% relative to the single-particle estimate, in
better agreement with experiment than previous estimates based on truncated bases.

PACS numbers: 21.60.Cs, 21.60.Ka, 27.40.+z

Recent publications [1,2] have described quantum
Monte Carlo methods for exact solution of the nuclear
shell model. The methods are based on the Hubbard-
Stratonovich (HS) representation [3] of the imaginary-
time many-body propagator in terms of one-body prop-
agators of noninteracting nucleons moving in a fluctu-
ating field. Thermal averages can be calculated, as can
ground-state properties; errors arise only from discretiza-
tion and statistical sampling, both of which can be con-
trolled. As these computations scale much more gently
with the number of single-particle orbits (N, ) and/or the
number of valence nucleons (N„) than do direct diagonal-
ization techniques, they hold great promise for treating
very large model spaces.

Unfortunately, the applicability of shell-model Monte
Carlo calculations has heretofore been limited by the
"sign problem" generic to all fermionic Monte Carlo tech-
niques [1,2,4,5]. The sign of the integrand may vary from
sample to sample and the net integral results from a del-
icate cancellation that is difficult to reproduce with a fi-

nite number of samples. The problem is well documented
(and as yet unsolved) in simulations of correlated electron
systems [4]. Except for an important, yet schematic, class
of nuclear interactions [2], we have found that all realis-
tic nuclear shell-model Hamiltonians sufFer from a sign
problem.

In this Letter, we report a practical solution to the
sign problem and present the Grst realistic calculation of
a mid- fp-shell nucleus, s4Fe [6]. Our method is based on
an extrapolation of observables calculated for a "nearby"
family of Hamiltonians whose integrands have a positive
sign. Success depends crucially upon the degree of ex-
trapolation required. We have found that, for all of the
many realistic interactions tested in the sd and fp shells,
the extrapolation required is modest, amounting to a
factor of 2 variation in the isovector monopole pairing
strength.

A general time-reversal invariant Hamiltonian with
two-body interactions can be brought to the form

H=) (e'0 +e G )+ —) V (C7, G ), (1)

where the G~ are a convenient set of one-body opera-
tors and 8 denotes the time reverse of G. For real V~,
H in Eq. (1) is manifestly time-reversal invariant. The
auxiliary field Monte Carlo approach utilizes the HS rep-
resentation of the imaginary-time many-body propagator
U = exp( —l3H) as a path integral over one-body prop-
agators in fiuctuating auxiliary fields. Upon introducing
Nq time slices of duration b,P = P/N& and complex c-
number auxiliary fields o~„(n = 1, . . . , Nt), we can write
the canonical expectation value of an observable 0 as

Tr (« ~") f D[o]W(o)@(o)(&)
Tr (e l'H) f D[o]W(o)4'(o) (2)

Here, the approximation becomes exact as N~ ~ oo
and the metric is D[o] = II „[do „do'„bPlV l/2n].
The non-negative weight is W(o') = ((o') exp( —P lV l

xlo „l~hP), where ((o) = Tr U is the canonical parti-
tion function of the one-body evolution operator U

Uz, U&, where U„= exp( —b,Ph„), and the one-body
Hamiltonian for the nth time slice is h„= Q (e' +
s Vo „)C7 +(e +s Vo'„)8, with s = +1 for

V~ ( 0 and s~ = ki for V~ ) 0. The "sign" is 4(o)
= &(o)/l&(o)l and (&)- —= T (&U )/((o) B«h ((o)
and (6) can be evaluated in terms of the N, x N, ma-
trix U that represents the evolution operator U in the
single-particle space.

The sign problem arises because the one-body parti-
tion function ((o) is not necessarily positive, so that the
Monte Carlo uncertainty in the denominator of Eq. (2)
(the W-weighted average sign, (4)) can become compa-
rable to or larger than (4) itself. In most cases (4) de-
creases exponentially with I9 or with the number of time
slices [5].

An important class of interactions free from the sign
problem [i.e., 4(o) = 1] was found in Ref. [2]. This
occurs when V ( 0 for all n in Eq. (1). In that case,
s = 1 for all a, so that both h„and U are time-reversal
invariant. The eigenvectors of U then occur as time-
reversed pairs with complex conjugate eigenvalues A, , A,

*

(i = 1, . . . , N, /2), the grand canonical partition function
I,'(o) = II, ll + A,

l
is positive definite, and the canonical

partition function for even N„ is also positive de6nite.
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Based on the above observation, it is possible to decom-
pose H into its "good" and "bad" parts, H = Hg + H~,
with

H~=) (.."o.+..o.)+- ) v. (n. , er. ),
0! V (0

H~ = —) v. (o., v.) .'
V.)0

The "good" Hamiltonian HG. includes, in addition to
the one-body terms, all the two-body interactions with
Vo & 0, while the "bad" Hamiltonian HB contains all
interactions with V & 0. By construction, calculations
with HG alone have C (o)—:1 and are thus free of the
sign problem.

We define a family of Hamiltonians H~ that depend
on a continuous real parameter g as H~ = Hg + gH~,
so that H~ —i = H. If the V that are large in mag-
nitude are "good, " we expect that Hs p = HG is a
reasonable starting point for the calculation of an ob-
servable (8). One might then hope to calculate (G)g =
Tr(Ge i +~)/Tr(e ~ &) for small g ) 0 and then to ex-
trapolate to g = 1, but typically (4) collapses even for
small positive g. However, it is evident from our con-
struction that Hs is characterized by 4(o) = 1 for any
g & 0, since all the "bad" V () 0) are replaced by "good"
gv~ & 0. We can therefore calculate (G)~ for any g & 0
by a Monte Carlo sampling that is free of the sign prob-
lem. If (G)~ is a smooth function of g, it should then
be possible to extrapolate to g = 1 (i.e., to the original
Hamiltonian) from g & 0. We emphasize that g = 0 is
not expected to be a singular point of (G)~; it is special
only in the Monte Carlo evaluation.

In the nuclear shell model, the two-body interaction
can be written in a density decomposition as [2]

) ) EKT(ac bd) ) ( ) pKMT(ac)PK MT(ted) . -
abed KTvr M

Here pKMT = pKM + (—) pKM (T = 0, 1), pKM (ac) =
(a, x a, )KM is the one-body density operator for the pair
of proton or neutron orbits (a, c) coupled to angular mo-
mentum K and its z projection M, and tr = (—)' +' =
( )'b+" i—s the parity. The matrices E~~T are constructed
from the two-body matrix elements V&~z(ab, cd) of good
angular momentum J, isospin T, and parity tr through
a Pandya transformation. For interactions that are
time-reversal invariant and conserve parity, the EKT(i, j)
are real symmetric matrices that can be diagonalized
by a real orthogonal transformation. The eigenvectors
pKM(ri) play the role of 0 in Eq. (1), and the eigen-
values AK (n) are proportional to V . In the Condon-
Shortley [7] convention pKM = 7r( )™pKM—so that
the "good" eigenvalues satisfy sign [AK (a)] = 7r(—)

+'
[8]. To minimize the number of auxiliary fields required,
we use the freedom to add an arbitrary symmetric in-
teraction to H [2] and choose VgT i

——VQT o so that
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FIG. 1. Upper: The eigenvalues V of the Brown-Richter
interaction in the fp shell. Eigenvslues for each particle-hole
angular momentum K are plotted in increasing order. Bot-
tom: The two-body matrix elements VgT i(ab, cd) of the
Brown-Richter interaction (solid circles) snd its "good" part
(open circles), for J & 4. The ordering for each J is arbitrary.
Plots of the VqT —0 and the remaining T = 1 matrix elements
(not shown) are similar to those shown for J ) l.

E&T=i = 0. E~T—0 is then uniquely determined by the
antisymmetric part of the interaction through the com-
bination (U&& o+ VJT i).

To demonstrate the viability and utility of the method,
we have applied it to the mid fps-he11 nucleus s4Fe using
the realistic Brown-Richter interaction [9]. The num-

ber of m-scheme Slater determinants describing the 6
valence protons and 8 valence neutrons moving among
the N, = 20 single-particle states of the Of7!25i2 and

Ops!2 i!g orbitals is ( s ) ( s ) = 5 x 10 . For comparison,
the largest model space treated by standard diagonaliza-
tion techniques is currently sTi [10]where the tn-scheme
dimension is - 7 x 10 .

Figure 1 (upper) shows the eigenvalues VK
tr( —) AK„(a) of the Brown-Richter interaction; only
about half of the eigenvalues are negative. However,
those with the largest magnitude are all "good." It is
possible to use an inverse Pandya transformation to cal-
culate the usual two-body matrix elements V&&(ab, cd)
for the "good" and "bad" interactions, allowing the ma-
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trix elements of H~ to be compared in Fig. 1 (lower) with
those of the full interaction. The greatest deviation is for
J = 0, T = 1 (the monopole pairing interaction), where
H~ is about twice as attractive as the physical H. In all
other channels, HG and H are quite similar.

We have performed Monte Carlo calculations for P =
2 MeV using Nt, ——32 (so that 6P = 0.0625 MeV ).
For g = —1, —0.8, —0.6, —0.4, —0.2, and 0, we took ap-
proximately 3300 uncorrelated samples. The computa-
tions were performed on the Intel Touchstone DELTA
512-node parallel computer, where each node is an In-
tel i860 processor. Each node produced and analyzed
a sample in about 4 min, so that each value of g took
about 25 min in total. Selected calculations for larger
values of P or Nt, show that we have converged to the
true ground-state properties.

The results for various observables are shown in Fig. 2.
The extrapolations to the physical Hamiltonian (g = 1)
are done by least-squares polynomials. For each observ-
able except (H), the degree of the polynomial is cho-
sen to be the lowest for which yz per degree of freedom
is less than 1; linear or quadratic extrapolations are al-
most always sufBcient. For (H), the variational principle
implies the additional constraint of vanishing derivative
at g = 1, in which case a quadratic or cubic polyno-
mial is used. We have also calculated response func-
tions R(r) = (Gt(r)G(0)) by polynomial extrapolation
of our calculations of In[R&(r)/Rs(0)] for g ( 0. Fit-
ting ln[Ri(r)iRi(0)] to a polynomial in r allows us to
determine moments of the normalized strength function

f~(E), such as E =—J'Ef~(E)dE. Our overall method
was checked in detail [11] by comparison with direct di-
agonalization in the sd shell using the Brown-Wildenthal
interaction [12] and in the lower fp shell (4 Ti) using the
Brown-Richter interaction [9].

Table I summarizes the extrapolated results for vari-
ous observables. Note that the statistical uncertainty in
these values is proportional to the uncertainties in the
Monte Carlo results for g ( 0, and so can be reduced by
increasing the number of samples. The calculated first
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FIG. 2. The results of the Monte Carlo calculations for Fe
at P = 2 MeV for several observsbles as s function of g ( 0.
Q = Q|, + Q„ is the isoscslsr quadrupole, Q, = Q„—Q„ is
the isovector quadrupole, GT+ is the Gamow-Teller operator
changing a proton to a neutron, and M1 is the magnetic mo-
ment operator using the free-nucleon g factors. The lines are
polynomial extrapolations; the extrapolated values and corre-
sponding uncertainties are shown at g = 1. The extrapolation
is linear for (Ml ), but quadratic for (Q ), (Q„), snd (GT+).
For (H), the extrapolation is cubic with the constraint of van-
ishing derivative at g = 1.

Isoscalar quadrupole
Isovector quadrupole
Gsmow- Teller (p, n)
Gsmow- Teller (n, p)
M1

TABLE I. Monte Carlo results for Fe.

(H) = —55.5+ 0.5 MeV

Total strength

(Q ) = 1482+84 fm

(Q„)= 381.3 +33.8 fm

((GT ) ) = 10.32 + 0.24

((GT+) ) = 4.32+ 0.24
((Ml) ) = 14.1+0.4@~

Occupation numbers
Protons

(ata) f», ——4.92 + 0.03
(at a)»» ——0.56 6 0.02
(aia)„,i, ——0.11 + 0.01
(a~a)y, i, ——0.41 + 0.01

Neutrons

(at a)f», ——6.35 + 0.03
(a~a)»&, ——0.86 + 0.02
(aia)„,i, ——0.17 6 0.01
(a a) fsi~ = 0.61 6 0.01

E (MeV)
1.25 6 0.16
12.7 + 0.2
6.13 + 0.17
9.7 + 0.2
8.6 + 0.7

6l5
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moment of the isoscalar quadrupole strength function,
1.25 + 0.16 MeV, should be compared with the empir-
ical excitation energy of the first 2+ state, 1.408 MeV.
Our estimate for the B(E2) for the decay of this state
assuming free nucleon charges (and that this transition
has sll of the strength) is 96 6 1 e2 fm4, while effective
charges (e„,e„) = (1.1,0.1)e would be required to repro-
duce the experimental value of 126 e fm . These charges
are significantly smaller than the (1.35,0.35)e used in
truncated calculations [13]or the (1.33,0.64)e used in the
lower fp shell [9]. The total mass quadrupole strength,
(Q2) = 1482 + 84 fm4, is significantly larger than the
simple single-particle estimate of 380 fm4. The total Ml
strength ((Ml)~) = (14.1 6 0.4)p& is quenched relative
to the single-particle estimate of 42.55@&. It is also inter-
esting to note that the occupation numbers of the single-
particle orbits are smeared across the Fermi surface.

Of particular physical interest are the Gamow-Teller
operators. Our calculations exactly satisfy the sum
rule ((GT )2) —((GT+)a) = 3(N —Z) = 6. The
single-particle estimate for ((GT+)2) corresponding to
the f7Iq proton ~

fager neutron transition is 10.28 [14],
so the shell-model Monte Carlo value of 4.32 6 0.24 is
quenched by 5870. This value is comparable to the exper-
imental result of 3.1 6 0.6 [15], but significantly smaller
than previous estimates of 6.40 or 6.70 based on trun-
cated bases [13]. The additional quenching on the full
space correlates with the enhanced B(E2,2+i, -+ 0+i) (i.e. ,

smaller efFective charge), as was surmised in [13].
Direct comparison with experimental Gamow-Teller

strength functions requires that we know the energy of
the daughter ground state relative to s4Fe. Since the
s4Co ground state is the isobaric analog state (IAS) of
the s Fe ground state, we find a mean (p, n) excitation
energy of E = 6.13 6 0.17 MeV. This is in agreement
with the systematics of Nakayama et aL [16],which give

EGT —EiAs- = 5.81 MeV, but is somewhat low relative
to the experimental value of 8.2 MeV [15]. When our
calculations of the mean (n, p) excitation energy are cor-
rected for the Coulomb energy (including exchange) and
the nucleon mass difference, we find E~ = 1.24j0.2 MeV,
to be compared with the experimental centroid of 3 MeV
[15]. A more consistent theoretical value of E~ can be ob-
tained by calculating the mass differences of the A = 54
isobars within the shell-model Monte Carlo [11].

The method presented in this Letter is a practical so-
lution to the sign problem for realistic shell-model in-
teractions. A full-basis calculation of 54Fe with the
Brown-Richter interaction shows the feasibility of the
method, with significant quenching of the Gamow-Teller
P+ strength. Systematic studies of the temperature, nu-

clide, and interaction dependence of these calculations
will be reported elsewhere. Our techniques also enable
the determination of an optimal effective interaction and
effective operators in a greatly enlarged model space.
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