VOLUME 72, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1994

Practical Solution to the Monte Carlo Sign Problem:
Realistic Calculations of 54Fe
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‘We present a practical solution to the “sign problem” in the auxiliary field Monte Carlo approach
to the nuclear shell model. The method is based on extrapolation from a continuous family of
problem-free Hamiltonians. To demonstrate the resultant ability to treat large shell-model problems,
we present results for *Fe in the full fp-shell basis using the Brown-Richter interaction. We find
the Gamow-Teller 87 strength to be quenched by 58% relative to the single-particle estimate, in
better agreement with experiment than previous estimates based on truncated bases.

PACS numbers: 21.60.Cs, 21.60.Ka, 27.40.+z

Recent publications [1,2] have described quantum
Monte Carlo methods for exact solution of the nuclear
shell model. The methods are based on the Hubbard-
Stratonovich (HS) representation [3] of the imaginary-
time many-body propagator in terms of one-body prop-
agators of noninteracting nucleons moving in a fluctu-
ating field. Thermal averages can be calculated, as can
ground-state properties; errors arise only from discretiza-
tion and statistical sampling, both of which can be con-
trolled. As these computations scale much more gently
with the number of single-particle orbits (IV,;) and/or the
number of valence nucleons (NV,) than do direct diagonal-
ization techniques, they hold great promise for treating
very large model spaces.

Unfortunately, the applicability of shell-model Monte
Carlo calculations has heretofore been limited by the
“sign problem” generic to all fermionic Monte Carlo tech-
niques [1,2,4,5]. The sign of the integrand may vary from
sample to sample and the net integral results from a del-
icate cancellation that is difficult to reproduce with a fi-
nite number of samples. The problem is well documented
(and as yet unsolved) in simulations of correlated electron
systems [4]. Except for an important, yet schematic, class
of nuclear interactions [2], we have found that all realis-
tic nuclear shell-model Hamiltonians suffer from a sign
problem.

In this Letter, we report a practical solution to the
sign problem and present the first realistic calculation of
a mid- fp-shell nucleus, 54Fe [6]. Our method is based on
an extrapolation of observables calculated for a “nearby”
family of Hamiltonians whose integrands have a positive
sign. Success depends crucially upon the degree of ex-
trapolation required. We have found that, for all of the
many realistic interactions tested in the sd and fp shells,
the extrapolation required is modest, amounting to a
factor of 2 variation in the isovector monopole pairing
strength.

A general time-reversal invariant Hamiltonian with
two-body interactions can be brought to the form
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where the O, are a convenient set of one-body opera-
tors and @ denotes the time reverse of @. For real V,,
H in Eq. (1) is manifestly time-reversal invariant. The
auxiliary field Monte Carlo approach utilizes the HS rep-
resentation of the imaginary-time many-body propagator
U = exp(—BH) as a path integral over one-body prop-
agators in fluctuating auxiliary fields. Upon introducing
N; time slices of duration A = /N and complex c-
number auxiliary fields g4, (n = 1,..., N;), we can write
the canonical expectation value of an observable O as

_ T (0e=8%) _ [ Dlo]W(0)(@)(O)s
O =Ty ~ oo =

Here, the approximation becomes exact as Ny — oo
and the metric is D[o] = 45 [doandol, AB|Val/2x).
The non-negative weight is W (o) = (o) exp(—Y_ |Val
X|oan|2AB), where ((0) = Tr U, is the canonical parti-
tion function of the one-body evolution operator U, =
UN, - - - Uy, where U,, = exp(—Aph,), and the one-body
Hamiltonian for the nth time slice is hp, = Y (€& +
5aVaOun)Oa + (€a + 8aVa0lhy)Oa, with s, = 1 for
Vo < 0 and s, = =i for V, > 0. The “sign” is ®(o)
= ((0)/I¢(0)| and (O), = Tr(OU,)/{(o). Both ((o)
and (O), can be evaluated in terms of the N, x N, ma-
trix U, that represents the evolution operator U, in the
single-particle space.

The sign problem arises because the one-body parti-
tion function ((o) is not necessarily positive, so that the
Monte Carlo uncertainty in the denominator of Eq. (2)
(the W-weighted average sign, (®)) can become compa-
rable to or larger than (®) itself. In most cases (®) de-
creases exponentially with 8 or with the number of time
slices [5].

An important class of interactions free from the sign
problem [i.e., ®(c) = 1] was found in Ref. [2]. This
occurs when V, < 0 for all « in Eq. (1). In that case,
sq = 1 for all @, so that both h,, and U, are time-reversal
invariant. The eigenvectors of U, then occur as time-
reversed pairs with complex conjugate eigenvalues A;, A}
(i=1,...,N4/2), the grand canonical partition function
¢(o) = II;|1 + X;|? is positive definite, and the canonical
partition function for even N, is also positive definite.
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Based on the above observation, it is possible to decom-
pose H into its “good” and “bad” parts, H = Hg + Hp,
with

Hg = (€504 + €a a)+ > Va {0 0a},

a V<0

53 Val0a O} - (3)

V>0

The “good” Hamiltonian Hg includes, in addition to
the one-body terms, all the two-body interactions with
Va < 0, while the “bad” Hamiltonian Hg contains all
interactions with V,, > 0. By construction, calculations
with Hg alone have ®(0) = 1 and are thus free of the
sign problem.

We define a family of Hamiltonians H, that depend
on a continuous real parameter g as H; = Hg + gHp,
so that Hy—qy = H. If the V, that are large in mag-
nitude are “good,” we expect that Hy—9 = Hg is a
reasonable starting point for the calculation of an ob-
servable (O). One might then hope to calculate (O), =
Tr (Oe=PHs) /Tr (e=PHs) for small g > 0 and then to ex-
trapolate to g = 1, but typically (®) collapses even for
small positive g. However, it is evident from our con-
struction that H, is characterized by ®(¢) = 1 for any
g < 0, since all the “bad” V(> 0) are replaced by “good”
gVa < 0. We can therefore calculate (O), for any g < 0
by a Monte Carlo sampling that is free of the sign prob-
lem. If (O), is a smooth function of g, it should then
be possible to extrapolate to g = 1 (i.e., to the original
Hamiltonian) from g < 0. We emphasize that g = 0 is
not expected to be a singular point of (O),; it is special
only in the Monte Carlo evaluation.

In the nuclear shell model, the two-body interaction
can be written in a density decomposition as [2]

9 Z Z EKT(G‘C bd) Z( )MPKMT(G—C)PK MT(bd)

abcd KTn

Here prmr = pers + (=) as (T =0,1), pZi7 (ac) =

(al X @c) kM is the one-body density operator for the pair
of proton or neutron orbits (a,c) coupled to angular mo-
mentum K and its z projection M, and 7 = (—)letle =
(=)%+!e is the parity. The matrices E} are constructed
from the two-body matrix elements VJ.(ab, cd) of good
angular momentum J, isospin 7', and parity 7= through
a Pandya transformation. For interactions that are
time-reversal invariant and conserve parity, the E%,(3, 7)
are real symmetric matrices that can be diagonalized
by a real orthogonal transformation. The eigenvectors
prum(a) play the role of O, in Eq. (1), and the eigen-
values Axr(a) are proportional to V,,. In the Condon-
Shortley [7] convention pxpr = m(—)X+Mpg_ s so that
the “good” eigenvalues satisfy sign [Axr(c)] = 7(—)K+?
[8]. To minimize the number of auxiliary fields required,
we use the freedom to add an arbitrary symmetric in-
teraction to H [2] and choose Vi._; = Vi_, so that
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Exgr_1 =0. Egr—p is then uniquely determined by the
antisymmetric part of the interaction through the com-
bination (Vir_o + Vir_1).

To demonstrate the viability and utility of the method,
we have applied it to the mid- fp-shell nucleus 5*Fe using
the realistic Brown-Richter interaction [9]. The num-
ber of m-scheme Slater determinants describing the 6
valence protons and 8 valence neutrons moving among
the N, = 20 single-particle states of the 0f7/25/2 and
0p3/2,1/2 orbitals is (260) (280) ~ 5 x 10%. For comparison,
the largest model space treated by standard diagonaliza-
tion techniques is currently *8Ti [10] where the m-scheme
dimension is &~ 7 x 106.

Figure 1 (upper) shows the eigenvalues Vkro =
(=) Akx(c) of the Brown-Richter interaction; only
about half of the eigenvalues are negative. However,
those with the largest magnitude are all “good.” It is
possible to use an inverse Pandya transformation to cal-
culate the usual two-body matrix elements VJ.(ab,cd)
for the “good” and “bad” interactions, allowing the ma-
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FIG. 1. Upper: The eigenvalues V, of the Brown-Richter
interaction in the fp shell. Eigenvalues for each particle-hole
angular momentum K are plotted in increasing order. Bot-
tom: The two-body matrix elements Vjr=1(ab,cd) of the
Brown-Richter interaction (solid circles) and its “good” part
(open circles), for J < 4. The ordering for each J is arbitrary.
Plots of the Vyr=¢ and the remaining 7" = 1 matrix elements
(not shown) are similar to those shown for J > 1.
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trix elements of Hg to be compared in Fig. 1 (lower) with
those of the full interaction. The greatest deviation is for
J =0,T =1 (the monopole pairing interaction), where
Hg is about twice as attractive as the physical H. In all
other channels, Hg and H are quite similar.

We have performed Monte Carlo calculations for § =
2 MeV~! using N; = 32 (so that AB = 0.0625 MeV~1).
For g = —-1,-0.8,—-0.6,—0.4, —0.2, and 0, we took ap-
proximately 3300 uncorrelated samples. The computa-
tions were performed on the Intel Touchstone DELTA
512-node parallel computer, where each node is an In-
tel i860 processor. Each node produced and analyzed
a sample in about 4 min, so that each value of g took
about 25 min in total. Selected calculations for larger
values of B or N; show that we have converged to the
true ground-state properties.

The results for various observables are shown in Fig. 2.
The extrapolations to the physical Hamiltonian (g = 1)
are done by least-squares polynomials. For each observ-
able except (H), the degree of the polynomial is cho-
sen to be the lowest for which x? per degree of freedom
is less than 1; linear or quadratic extrapolations are al-
most always sufficient. For (H), the variational principle
implies the additional constraint of vanishing derivative
at ¢ = 1, in which case a quadratic or cubic polyno-
mial is used. We have also calculated response func-
tions R(r) = (O!(1)O(0)) by polynomial extrapolation
of our calculations of In[R,(7)/R,4(0)] for g < 0. Fit-
ting In[R;(7)/R1(0)] to a polynomial in 7 allows us to
determine moments of the normalized strength function
fo(E), such as E = [ Efo(E)dE. Our overall method
was checked in detail [11] by comparison with direct di-
agonalization in the sd shell using the Brown-Wildenthal
interaction [12] and in the lower fp shell (44Ti) using the
Brown-Richter interaction [9].

Table I summarizes the extrapolated results for vari-
ous observables. Note that the statistical uncertainty in
these values is proportional to the uncertainties in the
Monte Carlo results for g < 0, and so can be reduced by
increasing the number of samples. The calculated first
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FIG. 2. The results of the Monte Carlo calculations for >*Fe
at 8 = 2 MeV ™! for several observables as a function of g < 0.
Q = Qp + Qn is the isoscalar quadrupole, Q, = Qp, — Qn is
the isovector quadrupole, GT+ is the Gamow-Teller operator
changing a proton to a neutron, and M1 is the magnetic mo-
ment operator using the free-nucleon g factors. The lines are
polynomial extrapolations; the extrapolated values and corre-
sponding uncertainties are shown at g = 1. The extrapolation
is linear for (M12), but quadratic for (Q?), (Q?2), and (GTZ2).
For (H), the extrapolation is cubic with the constraint of van-
ishing derivative at g = 1.

TABLE I. Monte Carlo results for 3*Fe.

(H) = —55.5 % 0.5 MeV

Total strength

E (MeV)

Isoscalar quadrupole
Isovector quadrupole
Gamow-Teller (p,n)

Gamow-Teller (n,p)

M1

(Q%) = 1482 + 84 fm*
(Q2) = 381.3 + 33.8 fm*

((GT-)?)= 10.32+0.24

((GT+)?) = 4.32+0.24
(M1)2) = 14.1 £ 0.4u%

1.25 £ 0.16
12.7 £ 0.2

6.13 £ 0.17
9.7+ 0.2
8.6 +£ 0.7

Protons

Occupation numbers

Neutrons

(ata)s,,, =4.92£0.03
(ata)p,,, = 0.56 % 0.02
(ata)p,,, =0.1140.01
(a'a)s,,, = 0.41£0.01

(a'a)s,,, =6.35£0.03
(a'a)p,,, = 0.86 £ 0.02
(a'a)p,,, =0.17£0.01
(ata)s,,, = 0.61+0.01
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moment of the isoscalar quadrupole strength function,
1.25 £ 0.16 MeV, should be compared with the empir-
ical excitation energy of the first 2% state, 1.408 MeV.
Our estimate for the B(E2) for the decay of this state
assuming free nucleon charges (and that this transition
has all of the strength) is 96 £ 1 €? fm*, while effective
charges (ep, e,) = (1.1,0.1)e would be required to repro-
duce the experimental value of 126 e? fm*. These charges
are significantly smaller than the (1.35,0.35)e used in
truncated calculations [13] or the (1.33,0.64)e used in the
lower fp shell [9]. The total mass quadrupole strength,
(Q?) = 1482 + 84 fm*, is significantly larger than the
simple single-particle estimate of 380 fm*. The total M1
strength ((M1)?%) = (14.1 £ 0.4)u% is quenched relative
to the single-particle estimate of 42.55u%;. It is also inter-
esting to note that the occupation numbers of the single-
particle orbits are smeared across the Fermi surface.

Of particular physical interest are the Gamow-Teller
operators. Our calculations exactly satisfy the sum
rule ((GT-)?) — ((GT4+)?) = 3(N — 2Z) = 6. The
single-particle estimate for ((GT.4)?) corresponding to
the f;/, proton — f5/2 neutron transition is 10.28 [14],
so the shell-model Monte Carlo value of 4.32 £ 0.24 is
quenched by 58%. This value is comparable to the exper-
imental result of 3.1 £ 0.6 [15], but significantly smaller
than previous estimates of 6.40 or 6.70 based on trun-
cated bases [13]. The additional quenching on the full
space correlates with the enhanced B(E2, 2}, — 07) (i.e.,
smaller effective charge), as was surmised in [13].

Direct comparison with experimental Gamow-Teller
strength functions requires that we know the energy of
the daughter ground state relative to 5*Fe. Since the
54Co ground state is the isobaric analog state (IAS) of
the 54Fe ground state, we find a mean (p,n) excitation
energy of E; = 6.13 £ 0.17 MeV. This is in agreement
with the systematics of Nakayama et al. [16], which give
Egr- — Eras = 5.81 MeV, but is somewhat low relative
to the experimental value of 8.2 MeV [15]. When our
calculations of the mean (n, p) excitation energy are cor-
rected for the Coulomb energy (including exchange) and
the nucleon mass difference, we find E, = 1.24+0.2 MeV,
to be compared with the experimental centroid of 3 MeV
(15]. A more consistent theoretical value of E; can be ob-
tained by calculating the mass differences of the A = 54
isobars within the shell-model Monte Carlo [11].

The method presented in this Letter is a practical so-
lution to the sign problem for realistic shell-model in-
teractions. A full-basis calculation of 5¢Fe with the
Brown-Richter interaction shows the feasibility of the
method, with significant quenching of the Gamow-Teller
B strength. Systematic studies of the temperature, nu-
clide, and interaction dependence of these calculations
will be reported elsewhere. Our techniques also enable
the determination of an optimal effective interaction and
effective operators in a greatly enlarged model space.
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