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Equation of State of an Anyon Gas in a Strong Magnetic Field
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The statistical mechanics of an anyon gas in a magnetic field is addressed. A harmonic regulator
is used to define a proper thermodynamic limit. When the magnetic field is sufFiciently strong,
only exact N-anyon ground states, where anyons occupy the lowest Landau level, contribute to the
equation of state. Particular attention is paid to the interval of definition of the statistical parameter
n E [

—1, 0] where a gap exists. Interestingly enough, one finds that at the critical filling v = —1/n
where the pressure diverges, the external magnetic field is entirely screened by the flux tubes carried
by the anyons.

PACS numbers: 05.30.—d, 11.10.—z

It is now widely accepted that anyons [1] should play
a role in the quantum Hall effect [2]. In the case of the
fractional quantum Hall effect, Laughlin wave functions
for the ground state of N electrons in a strong magnetic
field with filling v = I/rn provide an interesting compro-
mise between Fermi degeneracy and Coulomb correla-
tions. A physical interpretation is that at the fractional
filling electrons carry exactly m quanta of flux Po (m
odd), m —1 quanta screening the external applied field.
One is left with usual fermions (i.e. , anyons carrying one
quantum of flux) in an effective magnetic field with filling

1, or with bosons in a magnetic field entirely screened.
Anyons with intermediate statistics 1/rn enter the game
when localized excitations above the ground state are rec-
ognized as carrying fractional charge and statistics. The
presence of a gap in the spectrum is crucial for explain-
ing the absence of dissipation on the Hall plateaus. In
the case of the integer quantum Hall effect, on the other
hand, one considers a gas of noninteracting electrons fill-

ing exactly n Landau levels. The ground state is not
degenerate, one has automatically a cyclotron gap, and
the Coulomb interaction can be neglected.

In this Letter we calculate the equation of state of an
anyon gas in a strong magnetic field at low temperature.
We argue that considering boson based anyons the N
anyon ground-state problem is entirely solvable in terms
of known linear states [3,4], which end up being a prod-
uct of the one-body Landau ground state. Particular
care is given to the interval of definition of the statistical
parameter n C [

—1, 0] in order that the gap above the
ground state is under control. We find that the pressure
diverges when the filling factor v takes its maximal value
v = —1/n, suggesting that everything happens as if at
most —1/n anyons can occupy a given one-body Lan-
dau ground state. (After completion of this work, we

noticed that a similar conclusion has been reached in [5],
by a qualitative scaling argument using one-component
plasma analogy. ) At the critical value of the filling factor,
the anyon gas completely screens the external applied
magnetic field, leaving a free Bose gas. Moreover, the
system is incompressible (both nondegenerate and with
a gap).

Let us consider in the symmetric gauge the Hamilto-
nian of N anyons (charge e, flux P) in a constant magnetic
field B (k is the unit vector perpendicular to the plane,

rgj = F~ —rj

1 ( .kxr, , B
Htv=) ip, —n) ~" —e—kxr, ~. (1)

The statistical parameter, n = eP/27r, measures the alge-
braic fraction of quantum of flux Po = 27r/~e~ carried by
each anyon. One deals with boson based anyons, mean-

ing that the wave functions Q are symmetric. The anyons
are coupled to the external magnetic field by their electric
charge e. Coulomb interactions between anyons are ig-

nored. This will be justified a posteriori when the anyon

gas will be taken at its critical filing where the ground
state is nondegenerate and has a gap. The Hamiltonian
being invariant under (z, , y, , n, e) + (x, ,

—y, , —n, —e),
where e = eB/~eBi, the spectrum and thus the partition
function are invariant under (n, e) ~ (—n, —e). They
depend only on ~n~, en, and u, = ieB~/2m (half the
cyclotron frequency). One chooses e = +1; in the op-

posite case one would simply change n ~ —0,. The shift
a ~ o. + 2 is equivalent to the regular gauge transforma-
tion @ —+ exp( —2i Q,( 8;~)@, which does not affect the
symmetry of the wave functions. The spectrum is thus
periodic in n with period 2.

What is the X-anyon ground state in a magnetic Geld~

Let us reexamine this question more closely by paying
particular attention to the domain of definition of o.. It
will turn out that n has to be taken in the interval [

—1, 0],
implying that the magnetic field is antiparallel to the fIux

tubes carried by each anyon. (Because of the periodicity
o. ~ o. + 2, opposite direction has to be understood to a
given even number quanta of flux. )

One has the ground-state basis [3,4) (in complex coor-
dinate z, = x, + iy, )

N
m;q 77i4)eP=z r z, "exp — ) zz,

i(j i(j
f &0, m, &ni, (2)
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where z = Q,. z;/N is the center of mass coordinate. The
total angular momentum is L = t + P,&.m;z. Clearly,
the mq~'s can be chosen as independent orbital quantum
numbers. Moreover, since a bosonic representation has
been chosen, the eigenstates (2) must be symmetrized,
leading to additional constraints on the m,z's.

If n is not an integer, the eigenstates (2) are entirely
contained in the class I [4] of eigenstates of the ¹nyon
problem. If n is an integer ao, the m, z & o,o states are
contained in class I, the m, ~

= o.p states are contained in
class II, and the remaining states do not belong to either
class I or class II. The latter states should be obtained at
n = o,p from nonlinear states which are not analytically
known. More precisely, those states in (2) which are not
in class I if a = o;p (i.e., one or more of the m,z's equal to
o!p) are not obtained from the states in (2) when n ~ np

by superior value. On the contrary, when o. ~ ap by
inferior value, there is a one to one mapping with the
n = o.o states. This failure to map exactly all states when
n —+ ao by superior value is pertinent only when ao is an
even integer (Bose case). When o,p is odd (Fermi case),
one finds that the states which are not mapped either fall

in class I or simply vanish, after proper symmetrization.
Thus they can simply be ignored. This reflects the effect
of the exclusion principle since the states which survive

after symmetrization behave as r, " ' with m, ~
—eo &

1 when r,~
~ 0.

It follows that in order to control the gap above the N
anyon ground state (2), one should constrain the interval
of definition of n Startin. g from bosons, say n = 0, the
anyon eigenstates should be obtained by negative value

n & 0. Indeed, the ground states (2) interpolate contin-
uously between the bosonic and fermionic ground states
when a decreases from 0 to —1. Since the system is pe-
riodic in n with period 2, one might also consider the in-

terval [
—2, —1]. However, one knows that when o. ~ —2

by superior value some unknown nonlinear states enter
the game, as the gap between these peculiar states and
the ground state decreases to 0 when o, ~ —2. Clearly,
in this region one cannot consider a consistent thermo-
dynamic of the system in the ground state. Semiclassi-
cal and numerical analysis [6] for the few-anyon problem
strengthen this analysis. In particular, if the semiclas-
sical analysis indicates that the gap above the ground
state is indeed of order 2u, in the interval o, E [

—1,0], it
shows that excited states merge in the ground state when

a —+ —2. To conclude this discussion, the thermal prob-
ability to have an excited state is of order exp( —2Pu, ) in
the interval a c [

—1,0]. It is negligible when the thermal

energy 1/P is smaller than the cyclotron gap. The system
is projected into the Hitbert space of the ground state.

If one leaves aside the anyonic prefactor g,.& . r, , the
¹nyon ground-state basis (2) can be rewritten as the
direct product (Q,. i z,. * exp( —~num, z, z, ), E; & 0) of the
one-body Landau ground states of energy u, and angu-
lar momentum E;. In this sense, the ground state of N

anyons in a magnetic field (L = Qt', ) is constructed in
terms of one-body eigenstate in the lowest Landau level.
As far as exact anyonic eigenstates are concerned, the
m, ~'s basis has naturally prevailed. However, when sym-
metrizing the Fock space to derive the equation of state,
the 8, 's basis will be definitively well adapted.

Since one knows exactly the N-anyon ground-state
spectrum, one can compute the N-anyon partition func-
tion Z~ in the regime of strong magnetic field and low

temperature. From the Z~'s one in principle deduces the
cluster coefficients b~. However, this algorithm happens
to be quite tedious when N becomes large. Instead, one

can choose to derive the equation of state in a second

quantized formalism as a power series expansion in e.
Both methods will be used below.

In order to study the statistical mechanics of an anyon

gas, one should regularize the system at long distance to
define a proper thermodynamic limit [7]. This is obvi-

ously still needed in the presence of the magnetic field.

One confines the anyons by a harmonic attraction, adding

i zmuzrz to the Hamiltonian (1). The thermody-
namic limit is obtained when u ~ 0. In the presence of
the harmonic regulator, the ground-state problem is sim-

ply solved by replacing in (2) ~, ~ ~& ——g~z + ~z. The
efFect of the regulator is to partially lift the degeneracy
of the ground-state spectrum

N~, ~ N+~+ t+ m;~ —o.

i&j

by [L —nN(N —1)/2](vq —u, ), where L —nN(N —1)/2
is interpreted as a total orbital angular momentum of
the ¹nyon ground state in the singular gauge. Again,

if one leaves aside the anyonic prefactor, the eigenstates
can be rewritten in terms of one-body harmonic Landau

eigenstates

p„t(z) = z L„(m~gzz) exp( —~znuu, zz),

~„t = u), (2n+1) + ((u, —u).)S.

~" - 1 —z exp( —Pep t)e=o )

By definition, Z~ = P~ p z Ziv, where z is the fugacity
and Z~ is the 1V-boson partition function. For a linear

As already stressed above, ¹nyon states have to be
symmetrized in the case of boson based anyons. An N
anyon state is entirely characterized by the number ne
of one-body Landau states of angular momentum E =
0, 1, ..., oo, with the constraint P& nt = N, and its energy
is nothing else but the sum of one-body harmonic Landau
levels P& nt op t shifted by the constant N(N 1)n(u& —— —
~,)/2. Since one is interested in the equation of state,
symmetrization is done at the level of partition functions,
in a way quite similar to the bosonic oscillator equation
of state. The grand partition function for a gas of bosonic
oscillators in the lowest Landau level is

Z~ (5)
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spectrum one ean use the identity (1 —ze ~ ')Z" ~ Z~ when z ~ zeP( ' ). One deduces that Z~ —c P' 'Z~~

e
—NP(~t ~ ~Zb and finally

zb e
—NPu)~

(I —e-&(~~-~.))(1 —e —2P(~*—~.)) (I —e rv&-(~~ ~.))

Since the anyonic interaction shifts the N-body ground-
state spectrum by N(—N —1)a(cuq —cu, )/2, the N-anyon
partition function reads

Z =e& '" "
~ '- -~Z'N = (7)

The thermodynamic limit, ~ ~ 0, is understood as

I/(P~) —+ V/A, where the cluster coefficients brv (b2 =
Z2 —

~ Zi, b3 ——Zs —Z2Zi + s Zi, . . .) are multiplied by
N accordingly [7—9]. One infers

V (Nn+ 1)(Nn+ 2) (No. + N —1)
A2 N!
xe- ~ ~

)

where V/A is the volume in units of the thermal wave-

length A = /2+P/m.
One can see more directly how the volume factor, in

the thermodynamic limit, materializes in the cluster co-
efficients using a second quantization language. One has
to perform a perturbative expansion in n of the thermo-
dynamical potential. In this context, short distance sin-

N

Hrv = ) ——c)iB~ + —(di z~z~ —Ld~(z c) ~ozzie)~) +
mi=1

2

gularities of the anyon interaction ~ should be treated

before the perturbative analysis can proceed. These sin-

gularities manifest themselves in the nonanalyticity in

ini of the N-anyon spectrum, and the fact that N-anyon
states have to vanish when two anyons approach each
other. A perturbative analysis in o, is possible [8] if the
N-anyon wave function is rewritten as

(10)

&( )=,, @(» ) (9)
i(g

In (9), the exclusion of the diagonal of the configuration

space, a nonperturbative effect in ]cr[, has been encoded,

by hand, in the N-anyon wave function (Q is assumed

to be nonsingular). The Hamiltonian Hrv acting on g
is known to generate the correct perturbative expansion
in o, [8,9]. One notes that the redefinition (9) applied
to the ground state (2) precisely factors out the anyonic
prefactor Q, & r,, in Q. Thus, the Q ground-state basis
does not depend on n, and is identical to the unperturbed
basis. In the presence of the harmonic regulator H&~

reads

in[ —n8, —8, ia]+ n 8, —0,
C

m zi z m zi zi&j- 3

When acting on the ground-state basis it becomes a
sum of one-body Hamiltonian P,,

——e),e), + 2 u~2z, z, —
an, (z,e), —z, c), ) with total energy P, cog, shifted by

,& au~ —u, .

Second quantizing H& [9], the two-anyon vertex is

simply the constant shift —n(uq —u, )/2. One uses
one particle Green's function in the lowest Landau level

Gp(zz, zi):—p& (r &p() &(z&) exp( —pep g)po g(zr) and com-

putes the diagrammatic expansion of the thermodynam-
ical potential 0 = —In'~ Z)vz as a power series in
o.. At a given order o;", the leading connected diagrams
(which are the diagrams connected with n+ 1 loops) are
indeed behaving as I/(Pu)z when ~ —+ 0. Also, at this
order, nonvanishing diagrams start contributing in the
cluster coefficient b„+1. The thermodynamical potential
is found to be

&—:—) biz = ——22P~, lny(ze ~ ),
V

N=l

where y(z') is a solution of y —z'y +i = 1 with y(z') ~ 1
when z' ~ 0 [10]. The thermodynamical potential for
bosons (fermions) is correctly reproduced when n = 0
since y = 1/(1 —z') (respectively cx = —1 since y = 1+z').
The filling factor v —= p/pL, (where pr, = 2P~, /A2 is the
Landau degeneracy per unit volume) as a function of z

is given by y(ze P ) = 1+v/(1+ av). It is monotoni-
cally increasing with z from 0 to —1/n. One deduces the
equation of state

( v
PP = pL, ln

I
1+ 1+a.

(12)

When expanding the pressure as a power series in the
density p, one verifies that the expression of the sec-
ond virial coefficient a2 = —

2 (1+2er) is reproduced in
2pg

the limit where the Boltzmann weight exp( —2Pa, ) is ne-

glected. (One finds a)v = (——')~ &[(1+n)~ —o. ].)
Moreover, the first order expansion in n of (12) coin-

cides with the perturbative result in a strong magnetic
field given in [9]. The magnetization per unit volume is

JH = /lop+ 2g ln—(1 + i+' ) where po = ie[/2m is the
Bohr magneton. Except near the singularity v = —1/nar,

the ratio of the logarithmic correction to the de Haas-
van Alphen magnetization —pop is of order (Pcs, ) i, and
thus negligible.

Both pressure and magnetization diverge at v = —I/n.
In the case o, = 0, any value of v is allowed due to Bose
condensation. In the case of Fermi statistics n = —1,
Pauli exclusion implies that the lowest Landau level is

completely filled when v = 1. At a particular o., the
critical value v = —1/o. can be interpreted as at most

602
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—I/a anyons of statistics n can occupy a given lowest
Landau level. Since transitions to excited levels are by
construction forbidden, the pressure necessarily diverges
when the lowest Landau level is fully occupied such that
any additional particle is excluded. In this situation the
gas is incompressible. Indeed the isothermal compress-
ibility coefficient yz = —

v (&&+) vanishes at the criti-

cal filling (except when a. = 0 where y7 —+ A /2ur, ). The
ground state is clearly nondegenerate as can be shown
by extracting from 0 the canonical partition function
of the critical system Zl~) = exp( —p(N)„ur, ) where
(N)„= Vpi, (—I/o. ). Last but not least, one can get
some information on the quantum numbers of the crit-
ical nondegenerate ground state. In the fermionic case
a = —1, the nondegenerate ground state is known to be
a Vandermonde determinant, built from one-body Lan-
dau eigenstates E, = 0 implying a minimal total angular
momentum (N)„((N)„—1)/2 in the singular gauge. By
analogy, in the case n C [

—1, 0] one infers that the state
(2) with the f., 's (or equivalently l and m,s) all equal to
0,

/ m~,
r, exp] .— ') zz; [,2, )

(13)

is the critical nondegenerate ground state with total an-

gular momentum —o.(N)„((N)„—1)/2.
At the critical filling v = —I/o. , each anyon carrying

o;27r/e individual flux, one gets that the flux of the mag-
netic field is precisely —(N)„a27r/e: the magnetic field

is entirely screened by the anyons.
As already emphasized in the introduction, a simi-

lar magnetic screening is at the origin of the mean-field
Chem-Simons-Landau-Ginzburg theory of the fractional
quantum Hall efFect [2]. If rn is an odd integer, one can
gauge transform the Hall electrons in boson based anyons
carrying m quanta of flux, of opposite direction to the
magnetic field. The mean-field solution is meaningful
when the external magnetic field is completely screened
by the flux tubes carried by the anyons. It precisely de-
scribes the v = 1/rn fractional Hall liquid. When rn = 1,
one has the v = 1 integer quantum Hall effect where the
lowest Landau level is entirely filled. In the present work,
where an exact solution has been obtained without rely-

ing on any mean-field approximation, each anyon carries
—a quanta of fiux, where n c [

—1, 0]. At the critical
filling v = —I/a, again a magnetic screening occurs; it
corresponds to the maximum filling of the lowest Landau
level.

It would certainly be interesting to find out if some-
thing special happens in the particular case n = —1/n
with n an integer (n ) 1). At the critical filling v = n,
the one-body Landau ground state has been filled exactly
n times. So one has a nondegenerate ground state, with
a cyclotron gap, and an integer filling n. This might sug-
gest a possible reinterpretation of the n integer quantum

Hall effect in terms of a critical anyon gas of statistics
—1/n in a strong magnetic field with Coulomb interac-
tions ignored. In the usual picture of electrons filling n
Landau levels, the external magnetic field is not screened.
Here, on the contrary, the magnetic field is screened by
the critical anyon gas, quite similarly to the Laughlin
wave functions in the fractional quantum Hall effect.
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