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Atomic Soliton in a Traveling Wave Laser Beam
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A vector quantum field theory is employed to study the propagation of an ultracold atomic wave pack-
et in a traveling wave laser beam with a Gaussian intensity profile. The collective dipole-dipole correla-
tion induced by photon exchanges between atoms produces a "Kerr-type" nonlinearity of atomic waves.
%'e show that such an atomic nonlinearity could result in an atomic soliton under appropriate conditions.

PACS numbers: 42.50.Vk, 32.80.—t

Recently great progress in laser cooling and trapping of
neutral atoms has resulted in a rapid development in the
field of atom optics. One motivation of cooling atoms is

to achieve a long thermal de Broglie wavelength Ada

J2trh /rttkttT so that the wave aspect of atoms is im-

portant. Another goal of cooling and trapping atoms is to
create an ideal ultracold atomic source at extremely low

temperatures together with sufficientl high density so
that some macroscopic quantum effects can be observed.

Experiments toward colder and denser neutral atomic
vapors in traps have made rapid progress in the past few

years [1-6]. With the combination of optical cooling and
magnetic traps, experimentalists can now produce atomic
samples with densities approaching 10" to 10' /cm at
temperatures lower than I mK [1,5]. Such atomic sam-

ples have stimulated great interest in studying some novel

effects such as ultracold atomic collisions [2-6] and the
long-range interatomic correlation between ultracold
atoms [7,8].

In this Letter, we propose a scheme where an atomic
wave packet from an ultracold atomic source is loaded

into a traveling wave laser beam with a Gaussian intensi-

ty profile. A long-range interatomic correlation due to
photon exchanges between ultracold atoms in the laser
beam produces an atomic nonlinearity which can be ex-
ploited to generate an atomic soliton in the laser beam.
The principle of the generation of an atomic soliton in a

laser beam can be understood from Fig. l.
The ultracold atomic source is assumed to be composed

of identical Bose atoms. A quantum field theory [7,8] is

employed to describe the propagation of the ultracold
atomic wave packet in the laser beam. %e assume that a
linearly polarized laser with frequency toi. and wave vec-
tor kL is used to excite Js Js+ I transitions of the ul-

tracold atoms with transition frequency a), . In this case,
the ultracold atoms can be treated as a vector quantum
field with two components Vti and tit2 corresponding to the
internal ground state and excited state of the atoms, re-

spectively. The interaction of the atomic quantum field

with the laser beam of complex amplitude F. —) can be
described by the nonlinear stochastic Schrodinger equa-
tions [8]
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where y 4llsl at)/3hc is the spontaneous emission rate of a single atom and 6 taL —a), the detuning of the laser fre-
quency from the atomic transition frequency. The noise terms Gi and G2 describe the vacuum IIuctuations [8] and the
nonlinear coefficien is

L(r —r')=y[K(r —r')/2 —i'(r —r')] [i( sin 0+(1 —3cos 8)((—i)]
4

where 4 lkL' (r r ) I and 8 is the angle between the di-
pole moment is and the relative coordinate r —r'. The
«aI part yK(r —r') of the coefficient L(r —r') accounts
for the loss of atoms in the laser beam due to collisions
induced by many-atom spontaneous emission. The imagi-
nary part —yW'(r —r') corresponds to the dipole-dipole
interaction energy which is the result of photon ex-
changes between atoms during their internal transitions.

According to quantum electrodynamics, the complex

y2E(+ )

amplitude E(—) of the quantized laser field in Eqs. (I)
satisfies the quantum propagation equation [9]

g2E(~ ) g2P(~ )
(3)

c Bt 8t

where P + [P ]+ isVtt+(r, t)tit2(r, t)e ' " is the

positive frequency part of the polarization operator of the

atomic quantum field in the interaction picture.
In Eq. (I), there are several important terms which
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result in the diffusion of the center of mass momentum of
the atom. The dissipation and diffusion cause a loss of
atoms from the laser beam and destroy the coherence of
the atomic wave. To reduce the effects of these terms, we

consider a monochromatic laser beam with frequency far
from the atomic resonance. Both the laser beam and the
atomic wave packet propagate along the z axis. The
atomic wave packet is assumed to have a center wave vec-

tor Ko and a total kinetic energy F, Including the pho-
ton recoil eAect, we make the transformations

guided atomic
soliton yi(r, r) =itii(r, r)e'"

( ) ( ) i(Ko+kc)z iE,tlh— (4)

FIG. 1. The schematic diagram for atomic solitons guided by
a laser beam.

aAect the propagation of the ultracold atomic wave pack-
et in a laser beam. There is the linear dissipation propor-
tional to y and the nonlinear dissipation proportional to
yK(r —r') induced by spontaneous emission. The vacu-
um fluctuations described by the operators GJ (j=l,2)

E(+) ~(+) ikLz —i~~Ie

Substituting Eqs. (4) into Eqs. (I) and (3), we can obtain
the equations of motion for the atomic field envelopes

pi(r, t), &2(r, r) and the laser field envelope E, + . In the
region far from atomic resonance, the excited-state com-
ponent &2(r, t) of the atomic field can be adiabatically
eliminated from Eqs. (1) [8]. Then we have the non-

linear Schrodinger equation for the ground-state atomic
wave packet

&pi 8/iih + p
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with the nonlinear interatomic correlation coefficient

h y) n '+'(r) )'
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where cr y o~ k/(8 + y /4) is the absorption cross sec-
tion of atoms with e~,. k 2)p( aiL/h @ceo its peak value.
For a large detuning, the solution of Eq. (6) can be ap-
proximated as

(n'+'(r)('-[noF(x, y)]' 1
—o dz'pi+(r)yi(r)

(7)

where h=h —kLvz —kLv, /2 is the effective detuning in-

cluding the corrections of Doppler frequency shift and
photon recoil effect, vg =hKO/m is the group velocity of
the atomic wave packet, and v„hkL/m is the photon
recoil velocity. In the derivation of Eqs. (5), the sharp
property of the function L(r —r') in the region of the
atomic absorption wavelength has been used and the Rabi
frequency At+i(r) [Ot i(r)]+ 2p Et+1/h has been
considered a slowly varying function in the region.

%'e further assume that the transverse width of the ut-

tracold atomic wave packet is much narrower than the
width of the traveling wave laser beam so that the varia-
tion of transverse spatial structure of the laser beam due
to photon absorption by atoms can be ignored. Thus the
usual slowly varying envelope approximation gives the
propagation equation for the photons

dn") = —(-,' +i8/y)oui+(r)yi(r) n'+',
dz

where 00 is the peak Rabi frequency determined by the
initial peak laser intensity and the transverse profile of
the laser beam F(x,y). It is evident that the correction
due to photon absorption leads to a nonlinear interaction
between the atoms. Such an atomic nonlinearity is due to
the exchange of laser photons between the atoms during
the absorption process. By substituting the corrected
Rabi frequency (7) into Eqs. (Sa) and (5b), we find that
the atomic nonlinearity induced by absorption of photons
is the order of b . For an atomic wave packet with a
finite longitudinal extension, this may be compared to the
nonlinearity induced by spontaneous emission shown in

Eq. (5b), which is the order of Q-b . Therefore in the
region far from atomic resonance, the absorption-induced
atomic nonlinearity can be ignored.

Because of the sharp peak of the functions W(r —r')
and K(r —r') in the region of the atomic absorption
wavelength, the nonlinear correlation coefficient Q(r, r')
only produces an effect on ultracold atomic ensembles
where the interatomic correlation in the region close to
the atomic absorption wavelength is expected to be im-
portant. This case is similar to that in a superfluid [10].
In this case, the atomic quantum field iIii can be removed
from within the integral of Eq. (5a) to produce the ex-
pression

6I
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where V(r) t'i[QOF(x, y)] /4b is the single-atom gra-
1dient potential induced by the laser beam and V,

= —fd r W(r)cos(kLz) determines the interaction vol-

ume of the atoms. The negative sign accounts for an at-
tractive interaction between the atoms due to the long-
range dipole-dipole correlation induced by photon ex-
changes due to spontaneous emission. We consider a
Gaussian transverse profile with F(x,y ) =exp[ —(x
+y )/2WL]. Hence the single-atom potential V(r) is in-

dependent of the coordinate z and we can seek an approx-
imately transverse-longitudinal separated solution of Eq.
(8) with the form p~(r) =u(x,y)p(z, t)e ' ' . Since
the transverse width of the atomic wave packet is much
narrower than that of the laser beam, the exponential
transverse decay of laser intensity is expanded to first or-
der which produces the following wave equation for the
transverse motion of the atomic wave packet:

VT2u(x, y) +k)n,2a (x,y) u(x, y) =0,
where

mQ) x2+y2
n, tr(x,y) = I — I—

28hkT WL

is the effective refractive index for the atomic wave.
Equation (9) has an identical form to the Helmholtz
equation describing the propagation of a light wave in a
parabolic dielectric waveguide. For the laser frequency
detuned below the atomic resonance, Eq. (9) presents
bounded transverse Hermite-Gaussian eigenmodes,

(2~+~ni I) —I/2

u„(x,y)-
W,
r I~

x+y x yx exp —
2

H„- H~
2Wa, a a

with W, (2h1b1WL/mQ j)'t the transverse width of
fundamental mode ute(x, y) which is determined by the
laser parameters and the mass of the atom. By choosing

1

the appropriate parameters for the laser beam and the
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is the collision coefficient of the atoms which is analogous
to the Kerr-type nonlinear susceptibility in nonlinear op-
tics.

Making the transformations (=z —vst and t =t, we

can write an effective Hamiltonian for the atomic field
envelope

0 dg
6 8$ tIQ

2m |I( |I(

Xgy'(g)-q-'(g)y(g)y(g) .

In terms of the Hamiltonian (11), the time evolution of'

the ultracold atomic wave packet composed of many Bose
atoms is determined by the Schrodinger equation

e (i 2)

for 1@(t))the quantum state of the ultracold atomic wave
packet. For Bose atoms, in general, the quantum state
can be expanded as 14(t))=g„a„1U„(t))with the n-

atom state vector defined as

atom, we can realize a single transverse mode propaga-
tion. This case is similar to those in fiber optics where
one can realize a single transverse mode for a guided light
wave by choosing an appropriate core diameter for a
fiber. For a bounded fundamental mode, we have the fol-
lowing propagation equation for the longitudinal envelope
p(z, t) of the atomic wave packet:

1U„(t)) dg& „de „dg„v„(g&,g2, . . . , g„;t)y+(g&)y+(g2) . y+(g„)10),
n.

(i3)

where 10) is the vacuum state and p„($~,$2, . . . , g„;t)the
n-atom wave function. The complex coefficient a„deter-
mines the probability P„=1a„1of their being n atoms in

the atomic wave packets. For large atom number n,
the n-atom wave functions y„((~,g , . .2. ,(„,t) can be
solved in the Hartree approximation p„(g~,g , . .2. , $„;t)
=gg-~@„(g~,t), which is exact to leading order in n

[11]. Therefore for an ultracold atomic wave packet with

high density, the Hartree approximation is applicable.

eq(n i —)1e„1'e-„.8@„&28 @„
Bt 2m

(i4)

It is well known that Eq. (14) has a family of soliton
solutions of the form [12]

Then from Eqs. (11)-(13), we obtain the nonlinear
Schrodinger equations for the Hartree wave functions
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with soliton amplitude

A„=urn@(n
—I)/4h. In terms of (15), one can define a density function for the atomic wave

packet [13]

mg
2 exp

4trh W,

x+ 2 mgg P„n(n —
1 )sech (n —I ) (g —B„t) (i6)

Equation (16) determines the spatial density distribu-
tion of an atomic wave packet with longitudinal soliton
envelope in a Gaussian laser beam. The generation of
such an atomic soliton requires a strong interatomic
correlation through photon exchanges between the atoms.
In order to achieve the necessary long-range interatomic
correlation, the mean interatomic distance given by

p 't, for p the atomic density of the initially loaded
atomic wave packet, must be small compared to the
atomic absorption wavelength A, L =2tr/kL. The high den-

sity assumption is necessary to obtain a sharp peak in the
nonlinear coefficient L(r —r') of Eq. (2) and this assump-
tion was incorporated to derive Eq. (8). If we consider a
sodium beam with optical transition 3S~t2 3P3t2 corre-
sponding to A, L 589 nm, the atomic density must exceed
p-AL =5&10' /cm for the generation of an atomic
soliton in the laser beam. With current techniques in

laser cooling and trapping of neutral atoms, a density of
roughly 10' /cm for sodium atoms is achievable [1].

In summary, the long-range photon-exchange correla-
tion between atoms can produce an atomic nonlinearity in

the ultracold region for the propagation of an ultracold
atomic wave packet in a traveling wave Gaussian laser
beam. Consequently, a Gaussian laser beam acts as a
nonlinear atomic waveguide which allows soliton propa-
gation of an atomic wave under appropriate conditions.
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