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A new 1D discrete nonlinear Schrédinger (NLS) Hamiltonian is introduced which includes the
integrable Ablowitz-Ladik system as a limit. The symmetry properties of the system are studied.
The relationship between intrinsic localized states and the soliton of the Ablowitz-Ladik NLS is
discussed, including the role of discretization as a mechanism controlling collapse. It is pointed out
that a staggered localized state can be viewed as a particle of a negative effective mass. It is shown
that staggered localized states can exist in the discrete dark NLS. The motion of localized states

and Peierls-Nabarro pinning are also studied.
PACS numbers: 03.40.Kf, 52.35.Mw, 63.20.Pw

Intrinsic collapse to self-localized states in nonlinear
systems is increasingly studied because of its wide phys-
ical significance in plasmas, fluids, optics, solid state,
and so on [1] and the delicate mathematical details
controlling existence and stability [2-5]. Pure (1+1)-
dimensional integrable systems provide rigorous exam-
ples of self-localized states in the form of solitons and
are by now well understood [6]. However, physical con-
siderations which destroy complete integrability may not
destroy collapse to stable localized states, with important
consequences for mesoscopic self-organization controlling
macroscopic responses. Such physical “perturbations”
include integrability-breaking terms in partial differen-
tial equations, dimensionality, lattice discreteness, dis-
order, fluctuations (quantum, thermal), etc. [1,5]. The
properties of the intrinsic localized oscillatory states have
been studied by numerical simulation [7-9] for simple
monatomic lattices of particles with a nearest-neighbor
harmonic and quartic anharmonic interaction in 1D and
2D. The localized states were found to have amplitude-
dependent frequencies lying above the upper harmonic
phonon band edge, with their particles oscillating out of
phase with their neighbors. It has also been suggested
that localized states can exist in the D-dimensional dis-
crete nonlinear Schrodinger (NLS) lattice [10]. The work
of Ref. [10] has established that, in a 1D NLS, a local-
ized state lying below the linear phonon band reduces to
a one-soliton solution in the continuum NLS limit.

In this paper, we propose a discrete NLS equation with
“tunable” properties. The equation makes natural con-
tact with the integrable NLS, and illuminates the role
of lattice discreteness as a mechanism controlling col-
lapse. We discuss the general properties of the localized
states with an emphasis on the interplay of integrability
and nonintegrability [11], discreteness, and the contin-
uum limit. We study in detail a particular set of localized
solutions that have a staggered form, i.e., the neighbor-
ing sites oscillate out of phase. Unlike the unstaggered
localized states, which have the oscillation frequencies
below the linear phonon band and reduce to one-soliton
solutions in the continuum limit, these staggered states
have oscillation frequencies above the phonon band and
have no continuum counterpart. We will show that they
can exist even in a discretized NLS for the dark NLS and
that, in particular, they can be treated as particles of
negative effective mass. These states, staggered or other-
wise, are also reminiscent of “gap solitons” which, e.g.,
give rise to self-induced transparency in electromagnetic
wave transmission through a superlattice whose dielectric
constant is periodic in space [12,13]. In our case, the un-
derlying periodicity arises from the intrinsic discreteness
of the system. Finally, we will analyze the modulational
stability of the system to gain insight into the formation
and destruction of these localized states. For a complete
picture of our system, we also present results from nu-
merical simulations.
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The discrete 1D NLS equation we study is

id’n = _(¢n+1 + ¢n—1)
- [V’(¢n+1 + ¢n—1) + 2V¢n”¢n|2y (1)

where the overdot stands for the derivative with respect
to time t, n is a site index, and px > 0. This can be
derived from the Hamiltonian

H==Y 6ndni1+dndns1
2v 2v
- 7; nl? + e ;ln(l + leal?)

with the deformed Poisson brackets

{#n, ¢:n} =141+ N|¢n'2)6nm y
{¢ny¢m} = {¢:u ¢:n} =0 )

and the equation of motion ¢, = {H,¢n}. We will re-
fer to this system as IN-DNLS. The system has an en-
ergy conservation law. The quantity N' = p~1 3" In(1+
Klén|?) is also conserved and serves as a norm. Notice
that the limits of H, N exist, as u — 0.

If 4 = 0, Eq. (1) reduces to a familiar discrete NLS
equation (referred to as N-DNLS below) which is non-
integrable. If ¥ = 0, Eq. (1) is the Ablowitz-Ladik NLS
(referred to as I-DNLS), which is integrable and possesses
an infinite number of conservation laws [6]. Because of
the scaling property between the nonlinear coefficient and
the amplitude, both N-DNLS and I-DNLS have a sin-
gle measure for the strength of the nonlinearity, respec-
tively, v|¢|? and u|¢|?, while IN-DNLS has two, u|¢|?
and v/u. All these DNLS equations are discretizations,
up to a trivial gauge transformation, of the integrable
continuum NLS equation, i¢ = —dgz — 2k||2¢, which
possesses bright and dark soliton solutions for x > 0 and
Kk < 0, respectively. However, the discreteness of the sys-
tems gives rise to several interesting features which are
not present in the continuum limit.

We seek an oscillating solution of IN-DNLS in the form

¢n = wne—i(wt—an+ao),

where 1, is real and o¢ is a constant phase. From the
real and the imaginary parts of Eq. (1), we have

(M) = Wiy + cOS A(Pnt1 + Yn_1)
+ucosa(Pni1 + Yno1) + 20PalY2 =0,  (2)

d"n = —(Ynt1 — ¥n-1)(1 + m/»'ﬁ) sina, (3)

where 1) is the column vector, {¥1,%2, ..y ¥n...}, and Q
is the matrix defined by the left hand side of Eq. (2).
Equation (2) with vanishing boundary condition consti-
tutes a nonlinear algebraic eigenvalue problem for local-
ized states. Equation (3) determines the time evolution
of the localized states. [Note that the above ansatz and
results (2) and (3) are readily generalized to D > 1]
When a = 0 or 7, ¢, is stationary. We shall call a local-
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ized state staggered if a = m, and unstaggered if o = 0.
From Eq. (2), we have

w=-—2cos

Zn(wn+1 + wn—l)wﬁ _ QVZn wi
Yon¥n Sontn

Clearly, if ¥, > 0 and |v| is not too large, the stag-
gered state lies above the phonon band, while the un-
staggered state lies below. Particularly, if u = 0, there is
no such localized state, staggered or unstaggered, below
the phonon band for ¥ < 0, or above the phonon band
for v > 0. In the following discussion, we focus mainly on
those staggered states whose frequencies lie outside the
phonon band.

One can easily show that IN-DNLS possesses the fol-
lowing reflectional symmetry: If an unstaggered state,
n exp(—iwt), is a solution of the eigenvalue problem
(2), then the staggered state, (—1)", exp(iwt), is a so-
lution of the dual eigenvalue problem, i.e., Eq. (2) with
v — —v. From this symmetry, for N-DNLS, it follows
that there exists a staggered localized state whose fre-
quency is above the phonon band for v < 0 if there is
an unstaggered localized state below the phonon band
for v > 0. Later we will return to the stability issue of
the staggered localized states in the dark N-DNLS (i.e.,
p=0,v<0).

For I-DNLS, we can exactly solve the nonlinear eigen-
value problem. The localized solutions are of the form

—jcosa

sinh g8 v

n = sech[B(n — ut — zg)]e *wt—antoo) (4
#n = - sech(fi(n — ut = zo)] (@)
w = —2cosacoshf, (5)
u = 2B 'sinasinhg, (6)

and have the energy £ = H:
E = —4p~ ' cosasinh 8. (7)

These localized states are precisely the exact one-soliton
solutions obtained via, e.g., the inverse spectral trans-
form [6]. One can readily show that the solutions in Eq.
(4), under the above reflectional transformation, trans-
form to a set of solutions identical to the original set in
Eq. (4) but with a different parametrization. It follows
that these one-soliton solutions possess this exact self-
dual reflectional symmetry.

Another striking property related to these localized
states in I-DNLS is that they have continuous transla-
tional symmetry and for each 3 there exists a band of
velocities at which a localized state can travel [see Eq.
(6)] without experiencing any Peierls-Nabarro (PN) pin-
ning from the lattice discreteness [see Eq. (7)] [14]. This
is in contrast to the case of N-DNLS in which a mov-
ing localized state experiences dispersion and eventually
decays [10]. We note in passing that, contrary to the
general discrete case, a soliton of some fixed amplitude
in the continuum NLS can always be Galileo boosted to
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FIG. 1. Time evolution of the amplitudes |¢n| at n

100 (thin line) and 101 (thick line) are shown here for (a)
trapped staggered localized state that oscillates around &
0.5 at the top of the Peierls-Nabarro (PN) potential for v
0.1 with the initial parameters a = 0.314 x 10!, 8 =1, o
100.5; (b) an unstaggered localized state at the bottom of
the PN potential for v = —0.1 with the initial parameters
a=02x10"%, 8 =1, zo = 100.5. The insets show their
corresponding PN potentials (u = 1) (see text).

e

any velocity.

With the nonlinear u term, we expect that the local-
ized states in IN-DNLS are more robust against disper-
sion while translating, since the PN barrier is reduced by
the presence of the nonlinear nearest-neighbor interac-
tion. We demonstrate this by using an ansatz for a local-
ized state to calculate the total energy E of the state as
a function of 6, the position of the center of the localized
state between two neighboring lattice sites. The ansatz
is
_B
DY
where A = 1,—1 for the unstaggered, staggered state,

respectively. This ansatz is a good representation of a
localized state from our analytical study [see Eq. (9) be-

n = (A)" sech[B(n + §)],

low] and numerical simulation for small |v|/y and small
B. Notice that, in the terminology of [4, 9], such a stag-
gered state with § = 0.5 is an even-parity mode and
6 = 0 is an odd-parity mode. This classification loses
its usefulness for the solitons in the I-DNLS which have
continuously translational symmetry. The function E(6)
shows that, for » < 0, a localized state whose center is
located at the midpoint between two lattice sites has a
lower total energy than one located precisely at a lattice
site, regardless of the state being staggered or unstag-
gered, and for v > 0, the situation is reversed (see Fig.
1). The energy difference between § = 0 and § =
becomes more and more pronounced with the increase of
|v|/u or with the increase of the amplitude of a local-
ized state. This energy difference will act as a barrier
to the translation of a localized state. In our simulation,
we found that a very localized state (i.e., with large am-
plitude) is pinned and cannot move. By reducing the
amplitude or v, a state which is very localized can travel
at the group velocity, V; =~ 2sin a, which is derived from
the linear dispersion relation of the NLS; this traveling
state continuously emits a small and long phonon tail and
gradually slows down. We also observed that some of the
states of this kind will slow down to a threshold velocity,
at which the state is abruptly pinned. In this context,
we introduce an important concept, namely, that a stag-
gered localized state can be viewed as a particle with a
negative effective mass. From Eq. (7), for @ = a, or
T + ag, |as| < 1, the energy can be expressed as

. . 2
B 4)sinh 8 cosa, = — 4\ sinh 8 /\.ﬂ 2,
m m 2usinh 8

which exhibits a negative (positive) effective mass for
staggered (unstaggered) state. Obviously, a localized
state of a negative effective mass is mechanically unstable
(stable) at a minimum (maximum) of the PN potential
and it tends to run away from the minimum. This is con-
firmed by our simulation. In Fig. 1, we present cases in
which a trapped staggered (unstaggered) localized state
is oscillating at the top (bottom) of the PN potential for
v>0(v<O0).

Now we turn to discussing localized states in the low
amplitude limit. As pointed out in [2], lattice Green’s
function methods can be utilized to study the existence
of nonlinear localized states. From the linear part of Eq.

|

eta(n—m)

(sgm)/nmi 1

(2) we derive the lattice Green’s function

Ga(n,m -
(n,m) = Nzw (q) = Vw? —4cos?a
as N — oo, for |w/(2cosa)] > 1, where we(q) =
—2cosacosq is the eigenvalue for the linear part of Eq.

(2). It can be shown that the localized states satisfy the

following equation:

¥n =ZGa (n, )[4 cO8 A Ymt1+Pm—1) +20Pm|%,. (8)

[n—m|
(\/wi —4dcosla — le)

2cosa

For a stationary state whose frequency is very close to
the band edge, i.e.,w = —A(2+ A%),0 < A < 1, we see
that the Green'’s function has the asymptotic form

—Aln—-m|
b

Guo(n,m) — -2—)‘A—e as A —0.
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Then Eq. (8) can be solved to obtain an asymptotic lo-
calized solution

I = (A)" Vsech(An)ei[’\(2+A2)t], (9)

A
Vi + A
which is a localized state with a large width and a small
amplitude. It can clearly be seen that a low amplitude
staggered state has lower (higher) frequency, w;y, than
wy of a localized I-DNLS state if they have the same
amplitude and v > 0 (v < 0). They are related by

(b —v)wr +2v
—

From our numerical simulation, we found that this re-
lationship holds rather well even for very localized stag-
gered states (see Fig. 2).

Next we analyze spatially uniform, i.e., n-indepen-
dent, solutions and their stability. The modulational in-
stability of these spatially uniform states is indicative of
the numerical stability of a localized state. As is well
known, in the continuum limit, phonons in bright NLS
are linearly unstable and they will focus to form a soliton,
whereas the phonons in dark NLS are stable and there is
no localized solution for vanishing boundary condition.
From Eq. (2), we have the nonlinear dispersion relation,
w = —2cosa — 2(ucosa + v)y?, for the state ¥, = ¥,
independent of n. To study the linear stability of these
states with periodic boundary conditions, ¢, = @n4n,
we seek a solution in the completely general form [15]:
én = [Yn + un(t)] exp[—i(wt — an)], where u, is a small
perturbation. Defining 4 = 1, + 415, the linearized equa-
tion can be written as

-G

1:),2 - j 0 122 ’

where Q is the matrix defined in Eq. (2), and J is the
associated Jacobian matrix. The solutions are linearly
stable if and only if the eigenvalue problem, det(J$} —
2] ) = 0, has only real and nonpositive solutions for
A. There exists at least one zero eigenvalue as a conse-
quence of 1) = 0. It is straightforward to show that,
for 4 > 0, the unstaggered spatially uniform solutions
are stable if v > —pucos?(m/N) and their amplitude
¥? < sin?(n/N)/[v + pcos?(w/N)], and they are always
stable if v < —ucos?(n/N). The staggered spatially uni-
form solutions are stable if v < pcos?(m/N) and their
amplitude 12 < sin?(7/N)/[ucos?(n/N) — v], and are
always stable if v > ucos?(nw/N). From the stability of
these solutions we expect that, for v < u, the staggered
localized states are stable since the staggered phonons
are generally unstable as N — oo, and, in particular, the
dark N-DNLS has stable staggered localized states and
the unstaggered localized states decay to stable unstag-
gered phonons. These phenomena were indeed observed
in our simulation. For example, an initially staggered lo-
calized state readjusts its shape to become a stable local-

WIN (10)
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FIG. 2. “x” shows frequency, wrn, obtained by Fourier
transform, of a staggered localized state in IN-DNLS (p = 1);
as reference, “00” shows the frequency, ws, of the localized
state of the same amplitude in I-DNLS (p = 1). “+” shows
wrn predicted by Eq. (10). The higher branch is for states
with 3 ~ 1 and the lower one is for less localized states with
B =~ 0.5 (see text).

ized state, while an initially unstaggered localized state
always decays to a spatially extended, unstaggered small
amplitude state for the dark N-DNLS.

In conclusion, the new discrete NLS we proposed here
has enabled us to demonstrate clearly how the reflec-
tion symmetry and translational symmetry of the inte-
grable DNLS are broken by on-site nonlinearity. We have
pointed out that the localized states in I-DNLS in the
sense of [2-4] are the Ablowitz-Ladik solitons. We have
demonstrated that the motion of a staggered state can be
understood as a particle of negative effective mass. We
have also shown that staggered localized states exist and
are stable in the dark N-DNLS. Furthermore, the analysis
of the modulational instability of spatially uniform states
has deepened our understanding of the creation and de-
cay processes of a localized state. We have also discussed
the properties of Peierls-Nabarro potential which is inti-
mately related to the nonintegrability of the Hamiltonian
and which can be continuously tuned in our model. This
controlling mechanism can be utilized in the study of the
transport properties of the localized states, especially in
the study of the dynamical competition of the localiza-
tions induced by nonlinearity and by randomness in the
Anderson sense.
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