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Comment on "Thermal Transport in a Charged Bose
Gas and in High-T, Oxides"
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In a recent Letter [I], a theory was developed I'or
transport phenomena in a charged Bose gas. It was
found that, for a special relation between two diAerent
scattering mechanisms, the momentum relaxation rate
would show a maximum below the transition tempera-
ture. The conclusions were supported by reference to
thermal conductivity enhancement below T, in YBa2Cu3-
07- „(YBCO) [2]. However, the basic assumption that
the thermal conductivity maximum results from the re-
laxation time temperature dependence is incorrect. It fol-
lows from direct di/fusiiiry measurements using photo-
thermal techniques [3] that, in pure YBCO single crys-
tals, the relaxation time for the particles transferring heat
increases monotonically below T,, (Fig. I, curve I). It
will be seen that, below T, , the diffusivity rises over 2 or-
ders of magnitude. The maximum in thermal conductivi-

ty N is naturally explained by the simultaneous increase
of diffusivity D and decrease of heat capacity c (x-cD).
Curve 2 in the inset of Fig. 1 shows the thermal conduc-
tivity calculated from diffusivity data (curve I ) and heat
capacity measured elsewhere [4]. The measured data are
extremely sensitive to the sample homogeneity. If the
measurement is carried across a single twin boundary, the
thermal conductivity maximum becomes much weaker
(curve 3 in the inset). The maximum of curve 2 is

sharper than that reported in [2] (dashed curve 4 in the
inset) because in our experiments the spatial resolution
was higher, and the measurements could be taken inside a

single YBCO domain —10 pm in extent.
Though limitation of the relaxation time mechanism

discussed by Alexandrov and Mott may, in general, be re-

lated to the heat transfer in high-T, . materials, it may

happen only belo~ —30 K. At higher temperatures, the
maximum of thermal conductivity is more naturally ex-

plained within the traditional model of photon transport
[5].
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FIG. 1. Thermal diffusivity and thermal conductivity in the
a bpl-ane of YBCO as a function of temperature (see details in

text).
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