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Dressed-Field Pulses in an Absorbing Medium
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We have carried out a series of numerical experiments on the propagation of optical pulse pairs in ab-
sorbing media under one-photon and two-photon resonant lambda-system conditions. We report the first
observation of the spatial evolution of “dressed-field” pulses, the exact analog of the temporal evolution

of dressed-atom states.

PACS numbers: 42.50.Rh, 42.25.Bs, 42.50.Hz, 42.65.Dr

A variety of coherent nonlinear quantum optical phe-
nomena are known in which a secondary optical pulse
cooperates with or even controls a primary pulse. Re-
cently this effect has been discussed theoretically in con-
nection with electromagnetically induced transparency
(EIT) [1,2], and other instances include simulton propa-
gation [3], Raman solitons [4], laser-induced continuum
structures [5], lasing without inversion [6], and efficient
upper state excitation by counterintuitive pulse sequenc-
ing [7]. In most cases the pulses are to be injected into a
medium of atoms that are well approximated as three-
level lambda systems, such as sketched in Fig. 1. If the
two cooperating fields are permitted to evolve dynamical-
ly, their interplay via the two-photon transition leads to
significant mutual coherence [8].

The existence of a trapped state [9], or the presence of
a *“‘dark resonance,” which is an exact (i.e., nonperturba-
tive) single-atom two-photon effect, appears to be essen-
tial for EIT and several of the other phenomena men-
tioned. While the temporal evolution of trapped-state

physics is well understood, no theoretical work has yet ap- '

peared to show how trapped states can evolve spatially,
i.e., in the course of propagation through the necessary
two-photon medium. Harris has noted [1] that even the
details associated with the injection of the pulses into a
medium raise interesting questions.

Our work was designed to engage these open questions
and our results are obtained from “experiments” in which
the coupled Maxwell-Schrédinger equations are solved
exactly numerically. By means of these numerical solu-
tions various input pulse pairs can be observed as they
propagate in the medium over distances from a fraction
of a Beers length to many Beers lengths. Our calcula-
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FIG. 1. A sketch of the atomic energy levels, connected by
on-resonant pump and Stokes fields.

tions are the first to show the following: (1) the mutual
interplay and alteration of two cooperating injected
pulses as they propagate, (2) changes in the secondary
pulse as it “‘protects” the trailing portion of the primary
pulse during propagation, and most interesting, (3) the
rapid growth of a unique and extremely stable nondecay-
ing composite pulse that is actually a “dressed-field”” su-
perposition of the pair of pulses. It is distinct from a
two-photon pulse [10].

The slowly varying amplitude equations that describe
the spatial and temporal evolution of two pulses in a
three-level medium such as that shown in Fig. 1 are
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We refer to the fields as pump (P) and Stokes (S) pulses
and use the notation of Ackerhalt and Milonni [4], which
has the advantage that the labels 0, I, 2 indicate the
number of photons required to reach a given level from
the initial level, which is labeled 0. The pulses are repre-
sented by the corresponding Rabi frequencies in the usual
way, Qp=2dp6&p/h, etc., and the propagation coeffi-
cients are given by up=2aNdpwp/hc, etc., where N is
the density of three-level atoms in the medium [11]. All
five of the dynamical variables are obviously functions of
both z and . We write the equations in terms of ic; in-
stead of ¢ because in the results we will show ¢ is imagi-
nary and all other variables are real if they are initially
real, as we will assume. The existence of the usual
“trapped” superposition state can be checked easily from
Egs. (1a) and (1¢); in constant fields the combination of
amplitudes

Crap()=—c2() QF +co(t) QF (3)
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is independent of time.

Now let us consider the most interesting situation for
spatial propagation, which occurs when the intermediate
level |1) is one-photon resonant with both laser pulses.
This is the case of most rapid decay of coherence, because
the absorption coefficients are largest. For simplicity we
will assume [as in Eqs. (1)] that the decay of level |1)
occurs to “external” levels outside the lambda system,
permitting the use of amplitude equations for the medium
instead of Bloch variables, and that the two absorption
coefficients are equal [12].

Our numerical experiments begin with the injection of
pump and Stokes pulses into the medium, which is in its
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FIG. 2. Snapshots of long propagating pulses at different
depths of penetration into the medium (measured in pump ab-
sorption lengths), given y=0.040 and the peak © =0.050. (a)
Resonant pump pulsé alone, showing rapid depletion; (b) reso-
nant pump in the presence of resonant companion Stokes pulse,
showing reduced depletion; and (c) companion resonant Stokes
pulse, showing amplification.

ground level |0) throughout. We then solve the coupled
set of nonlinear equations (1) and (2) in the moving
frame defined by the variables t=tr—z/c and {=:.
Many combinations of pump and Stokes pulses have been
used in our experiments, but we will display here only rel-
atively simple ones that turn on and off smoothly and
have a constant amplitude in between, in order to concen-
trate on the most interesting results.

Figure 2 shows snapshots of the pump pulse at different
depths of penetration, measured in standard pump-field
absorption lengths. Part (a) shows the behavior of the
pump pulse alone, (b) shows the pump pulse if both
pulses are injected, and (c) shows the accompanying
Stokes pulse. This is done for a relatively lossy medium
where the coefficient y is approximately equal to the peak
value of the Rabi frequencies: y=0.040 and Qp=0Qg
=0.050 [13]. What happens during propagation is
clear— the leading (early-time) edge of the pump pulse is
continuously depleted as it penetrates the medium. If
there is also a Stokes pulse present, it is correspondingly
amplified, and the presence of the Stokes pulse clearly
retards the normal absorption of the pump pulse. That
is, note the contrast between the “protected” propagation
of the pump pulse in (b) compared with the “unprotect-
ed” propagation shown in (a). Incidentally, this is the
first observation of details of propagation implicit in EIT
as proposed by Harris [2].

Our second example shows pulse behavior in a medium
with much more coherence, i.e., 10 times smaller level de-
cay, y=0.004, with the same input pulse parameters:
Qp=0Q5=0.050. The results graphed in Fig. 3 show
greater variation of both pump and Stokes pulse shapes
during propagation. Despite this variation, one can still
see protection of the pump pulse by the presence of the
Stokes pulse.

What is much more interesting, however, is the
discovery that certain superposition pulses, that we identi-
fy with dressed-field states in close analogy to the
dressed-atom states of a two-level system [14], propagate
essentially unchanged. We now introduce these dressed
fields by a particular time-dependent combination in the
two-dimensional space of field states:
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A similar combination, however, with time-independent
coefficients, was identified by Harris [2]. In the limit of
adiabatic excitation of the lambda system one has ¢, = 0.
In this case co and ¢, satisfy |co|2+]c2|>~=1, and this
makes the matrix in (4) a rotation matrix, and shows that
Q + is in this sense the unique partner of @ — [15].

Now note that the familiar trapped-state amplitude
Cuap defined in (3), which is conventionally regarded as a
field-dressed combination of level amplitudes co and c,,
is in fact exactly the same variable as @ - in (4), which
we see here in the context of field propagation should be
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FIG. 3. Snapshots of propagating pulses identical to those of
Fig. 2, in the case of greater atomic coherence. Here y=0.004
(factor of 10 smaller than in Fig. 2). (a) Resonant pump pulse
alone, showing strong rapid coherence oscillations and de-
pletion; (b) pump in the presence of companion resonant Stokes
pulse, showing reduced temporal variation and depletion; and
(c) companion resonant Stokes pulse, showing coherence oscil-
lations and amplification.

regarded as an atom-dressed combination of field ampli-
tudes Qp and Qgs. It is well known in the atomic case
that under appropriate circumstances the dressed super-
position states have more convenient properties and are
able to describe the physics more compactly than the bare
states. The same is true for dressed fields, as we now
demonstrate.

Using exactly the same computer data as in Figs. 2 and
3, we can replot the propagation physics in terms of Q —
and Q+. Some of the results are shown in Fig. 4 for
several depths of propagation, using the same graphical
format as in Figs. 2 and 3. Comparisons clearly show the
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FIG. 4. Snapshots of the dressed-field pulse Q- defined in
(4). Graphs for y=0.040 and y=0.004 were computed from
the same data used for Figs. 2 and 3, respectively. Temporal
variation is suppressed and spatial relaxation to steady state
occurs rapidly and smoothly, before the second snapshot. In
each case the stability of the dressed-field pulse is striking when
compared to the variation and depletion shown for the individu-
al pulses in Figs. 2 and 3.

special character of the dressed state of the field denoted
Q —. Recall that between Figs. 2 and 3 the atomic decay
rate (and thus the absorption coefficient) differed by a
factor of 10. This had a significant effect on the propaga-
tion of the bare fields (differences between Figs. 2 and 3),
but Fig. 4 shows it has no significant effect on the dressed
field. The dressed field quickly reaches a quasisteady
state during propagation: For Q - the steady state has a
practically constant amplitude that mimicks the input
pulse shapes (as shown), and for Q4+ the steady state is
an almost zero value (not shown). This is a perfect paral-
lel to the atomic case, where the trapped state quickly
reaches a constant value while the orthogonal state,
which is strongly coupled to the decay from the inter-
mediate level, decays to zero.

We have carried our calculations over physically realis-
tic distances, i.e., a few to many pump Beers lengths, and
not to asymptotic distances. One can expect that eventu-
ally there will be modification of the dressed-field pulses,
but it is important to note that over the realistic domain
of our investigation we have found that our results apply
to a wide variety of pulse pairs, even including temporally
offset (but still overlapping) pulses and pulses with sig-
nificantly different initial amplitudes. We can also say
that the atomic level amplitudes, which we do not show
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here, follow the pulses in the sense that they also quickly
reach quasisteady values that can be significantly dif-
ferent from their initial values. In particular, although ¢,
is initially zero everywhere in the medium it adjusts
quickly and can grow to more than 0.5 in the trailing
edge of the excitation. Similarly, and importantly, we
have found that ¢; can transiently exhibit values above
0.25 in magnitude.

In conclusion, we have presented the results of calcula-
tions of the spatial propagation of pairs of long optical
pulses under simultaneous one-photon and two-photon
resonance conditions. One consequence is a clear demon-
stration of the “protection” of a resonant pump pulse by
a companion resonant Stokes pulse, as predicted by
Harris [1,2] for EIT. In this sense our results provide ad-
ditional information on EIT propagation. However, our
main result is the discovery of dressed-field amplitudes.
We have found that the same dynamical variable
crap(1) = —c2(1) QF +co(1) @ %, which is traditionally in-
terpreted as a field-dressed atomic amplitude with special
properties in temporal evolution, can also be recognized
as an atom-dressed field amplitude with special proper-
ties in spatial evolution. Our calculations show dressed
fields that are generated during propagation without spe-
cial attention to input pulse shapes and without the need
for the preparation of inversion or coherence in the medi-
um. They are relatively very stable during propagation,
and stability is established rapidly and occurs even when
propagation is accompanied by significant dynamical
rearrangement of atomic level populations and significant
degradation of “‘bare-field” pulse shapes. It is interesting
to speculate on applications of dressed-field stability.
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